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Part I: Motivation



Stochastic Convex Optimization

Problem:
f ∗ = min

x∈Q
f (x),

where f : Rn → R is a convex function, Q ⊆ Rn is a simple convex set.

Stochastic gradient oracle: Random vector g(x , ξ) ∈ Rn (ξ is a r.v.)
such that

Eξ[g(x , ξ)] = ∇f (x).

Main example: f (x) = Eξ[f (x , ξ)]. Then, g(x , ξ) = ∇x f (x , ξ).

E.g.: f (x) = 1
m

∑m
i=1 fi (x) =⇒ g(x , ξ) = ∇fξ(x), ξ ∼ Unif({1, . . . ,m}).
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Stochastic Gradient Method (SGD)

Problem: f ∗ = minx∈Q f (x).

Stochastic Gradient Method (SGD):

xk+1 = πQ(xk − hkgk), gk ∼ ĝ(xk),

where πQ(x) = argminy∈Q∥x − y∥ is the Euclidean projection onto Q.

Main questions:

How to choose step sizes hk?

What is the rate of convergence?
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Convergence Guarantees for SGD

Assume that:

Q is bounded: ∥x − y∥ ≤ D, ∀x , y ∈ Q.

Variance of ĝ is bounded: Eξ[∥g(x , ξ)−∇f (x)∥2] ≤ σ2, ∀x ∈ Q.

Nonsmooth optimization: ∥∇f (x)∥ ≤ M, ∀x ∈ Q.

hk =
D√

(M2 + σ2)(k + 1)
=⇒ E[f (x̄k)]− f ∗ ≤ O

((M + σ)D√
k

)
,

where x̄k = 1
k

∑k−1
i=0 xi .

Smooth optimization: ∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥, ∀x , y ∈ Q.

hk = min
{ 1

2L
,

D

σ
√
k + 1

}
=⇒ E[f (x̄k)]− f ∗ ≤ O

(LD2

k
+
σD√
k

)
.
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Discussion

What we saw previously is the standard approach in Optimization:
1 Fix a certain Problem class P.
2 Develop a “good” method tailored to P.

However:
▶ A specific problem may belong to multiple problem classes.
▶ Different problems may belong to different problem classes.

Ideally, we would like to have universal algorithms suitable for
multiple problem classes at the same time.
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Universal Gradient Methods [Nesterov 2015]

Problem: minx∈Q f (x)

Hölder constants: Lν := sup
x ,y∈Q;x ̸=y

∥∇f (x)−∇f (y)∥
∥x−y∥ν , ν ∈ [0, 1].

Note:

ν = 1: ∥∇f (x)−∇f (y)∥ ≤ L1∥x − y∥ (Lipschitz gradient).

ν = 0: ∥∇f (x)−∇f (y)∥ ≤ L0 (contains Lipschitz functions).
This class is better than ∥∇f (x)∥ ≤ M.

If Lν1 , Lν2 < +∞ for some ν1 ≤ ν2, then Lν < +∞, ∀ν ∈ [ν1, ν2].

Main assumption: There exists ν ∈ [0, 1] such that Lν < +∞.
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Universal Gradient Methods – II

Method: xk+1 = πQ(xk − 1
Lk
∇f (xk)), where Lk is found by line search to

satisfy the following condition:

f (xk+1) ≤ f (xk) + ⟨∇f (xk), xk+1 − xk⟩+
Lk
2
∥xk+1 − xk∥2 +

ϵ

2
.

Efficiency bound: O

(
inf

ν∈[0,1]

(Lν
ϵ

)2/(1+ν)
D2

)
iters to f (x∗k )− f ∗ ≤ ϵ

Universal Fast Gradient Method: O

(
inf

ν∈[0,1]

(LνD1+ν

ϵ

)2/(1+3ν)
)

Great methods but don’t work with stochastic oracle!
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AdaGrad-type Methods

AdaGrad algorithm [Duchi et al. 2011]: (gk ∼ ĝ(xk))

xk+1 = πQ(xk − hkgk), hk =
D√∑k
i=0∥gi∥2

.

Foundation of nowadays popular Adam, RMSProp, . . . .

Convergence rate: Assuming ∥∇f (x)∥ ≤ M, ∀x , we get

E[f (x̄k)]− f ∗ ≤ (M + σ)D√
k

,

where σ is the variance of gradient oracle.

UniXGrad [Kavis et al. 2019]: Accelerated gradient method with
AdaGrad step sizes but based on difference of gradients:

E[f (xk)]− f ∗ ≤ O

(
min

{MD√
k
,
LD2

k2

}
+
σD√
k

)
.

(M and L are Lipschitz constants for f and ∇f .)
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Motivation and Related Work

Develop “fully universal” gradient methods that automatically adjust to
the right Hölder class and oracle’s variance.

Related work:

Universal methods with line search [Nesterov 2015; Grapiglia and

Nesterov 2017; Grapiglia and Nesterov 2020; Doikov and Nesterov 2021;

Doikov, Mishchenko, et al. 2024]. Only for deterministic optimization.

Adaptive methods for stochastic optimization [Duchi et al. 2011; Levy

et al. 2018; Kavis et al. 2019; Ene et al. 2021] No specific guarantees for
Hölder class.

Parameter-free methods [Orabona 2014; Cutkosky and Boahen 2017;

Cutkosky and Orabona 2018; Jacobsen and Cutkosky 2023; Carmon and

Hinder 2022; Defazio and Mishchenko 2023] Slightly different focus, also
no specific guarantees for Hölder class (with stochastic oracle).

Most recent work [Li and Lan 2023] Line-search-free accelerated
gradient method, similar to ours step-size formula, but only for
deterministic optimization.
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Part II: Main Algorithms and Results



Problem Formulation

Composite optimization problem:

F ∗ = min
x∈domψ

{F (x) = f (x) + ψ(x)},

where f and ψ are convex functions, ψ is simple.

Assumptions:

1 Bounded domain: ∥x − y∥ ≤ D, ∀x , y ∈ domψ.

2 Hölder gradient: ∥∇f (x)−∇f (y)∥ ≤ Lν∥x − y∥ν , ν ∈ [0, 1].

3 Unbiased stochastic oracle: Eξ[g(x , ξ)] = ∇f (x).

4 Bounded variance: Eξ[∥g(x , ξ)−∇f (x)∥2] ≤ σ2.

Discussion:

Most important example: ψ is {0,+∞} indicator of set Q.

Our methods require D and automatically adapt to ν, Lν and σ.
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Universal Stochastic Gradient Method

Method: Choose x0 ∈ domψ, set H0 = 0 and iterate:

xk+1 = argmin
x∈domψ

{
⟨gk , x⟩+ ψ(x) +

Hk

2
∥x − xk∥2

}
, gk ∼ ĝ(xk),

Hk+1 = Hk +
[β̂k+1 − Hk

2 r2k+1]+

D2 + 1
2 r

2
k+1

, where
rk+1 = ∥xk+1 − xk∥,
β̂k+1 = ⟨gk+1 − gk , xk+1 − xk⟩

β̂k+1 is a stoch. estimate of symmetrized Bregman distance:

β̂f (x , y) = ⟨∇f (y)−∇f (x), y − x⟩ = βf (x , y) + βf (y , x),

where βf (x , y) = f (y)− f (x)− ⟨∇f (x), y − x⟩.
Convergence rate for x̄k = 1

k

∑k
i=1 xi :

E[F (x̄k)]− F ∗ ≤ inf
ν∈[0,1]

8LνD
1+ν

k(1+ν)/2
+

4σD√
k
.
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Universal Stochastic Fast Gradient Method
Set v0 = x0, H0 = A0 = 0, ak = k , Ak =

∑k
i=1 ai =

1
2k(k + 1) and iterate

yk =
Akxk + ak+1vk

Ak+1
, g y

k ∼ ĝ(yk),

vk+1 = argmin
x

{
ak+1[⟨g y

k , x⟩+ ψ(x)] +
Hk

2
∥x − vk∥2

}
,

xk+1 =
Akxk + ak+1vk+1

Ak+1
,

Hk+1 = Hk +
[Ak+1β̂k+1 − Hk

2 r2k+1]+

D2 + 1
2 r

2
k+1

,

rk+1 = ∥vk+1 − vk∥,
β̂k+1 = ⟨g x

k+1 − g y
k+1, xk+1 − yk⟩,

g x
k+1 ∼ ĝ(xk+1).

Convergence rate:

E[F (xk)]− F ∗ ≤ inf
ν∈[0,1]

32LνD
1+ν

k(1+3ν)/2
+

8σD√
3k
.
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Part III: Main Ideas and Outline of Analysis



Starting Recurrence

Method: xk+1 = argminx{⟨∇f (xk), x⟩+ ψ(x) + Hk
2 ∥x − xk∥2}.

Central inequality (for dk = ∥xk − x∗∥, rk+1 = ∥xk+1 − xk∥):

f (xk) + ⟨∇f (xk), xk+1 − xk⟩+ ψ(xk+1) +
Hk

2
r2k+1 +

Hk

2
d2
k+1

≤ f (xk) + ⟨∇f (xk), x
∗ − xk⟩+ ψ(x∗) +

Hk

2
d2
k .

(Cf: ϕ(x) ≥ ϕ(x̄)+ µ
2∥x − x̄∥2 for µ-strongly cvx ϕ with minimizer x̄ .)

Estimating f (xk) + ⟨∇f (xk), x
∗ − xk⟩ ≤ f (x∗) and rearranging gives

F (xk+1)− F ∗ +
Hk

2
d2
k+1 ≤

Hk

2
d2
k + βk+1 −

Hk

2
r2k+1, (*)

where βk+1 = f (xk+1)− f (xk)− ⟨∇f (xk), xk+1 − xk⟩ ≡ βf (xk , xk+1).
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Universal Gradient Method with Line Search – I

Recall: For βk+1 = βf (xk , xk+1), rk+1 = ∥xk+1 − xk∥, we have

F (xk+1)− F ∗ +
Hk

2
d2
k+1 ≤

Hk

2
d2
k + βk+1 −

Hk

2
r2k+1. (*)

Line-Search Approach: Choose Hk such that βk+1 −
Hk

2
r2k+1 ≤

ϵ

2
(#),

and divide (∗) by Hk to make d2
k -terms telescopic:

1

Hk
[F (xk+1)− F ∗] +

1

2
d2
k+1 ≤

1

2
d2
k +

ϵ

2Hk
.

Telescoping and diving by Sk =
∑k−1

i=0
1
Hi
, we get (for H∗

k = max
0≤i≤k−1

Hi )

F (x∗k )− F ∗ ≤ d2
0

2Sk
+
ϵ

2
≤

H∗
kd

2
0

2k
+
ϵ

2
. (**)

It remains to upper bound H∗
k .
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Universal Gradient Method with Line Search – II

Recall: Hk needs to satisfy ∆k := βk+1 − Hk
2 r2k+1 ≤

ϵ
2 (#).

Since βk+1 ≡ f (xk+1)− f (xk)− ⟨∇f (xk), xk+1 − xk⟩ ≤ Lν
1+ν r

1+ν
k+1 , we

can estimate (maximizing in the expression in rk+1):

∆k ≤ Lν
1 + ν

r1+νk+1 − Hk

2
r2k+1 ≤

(1− ν)L
2/(1−ν)
ν

2(1 + ν)H
(1+ν)/(1−ν)
k

.

Hence, (#) is satisfied whenever Hk ≥ H̄ν , where

H̄ν := L2/(1+ν)ν

[
1− ν

(1 + ν)ϵ

](1−ν)/(1+ν)
.

Line search ensures that Hk ≤ 2H̄∗, where H̄∗ := infν∈[0,1] H̄ν .
Substituting this bound into (∗∗), we get the final complexity of

O

(
inf

ν∈[0,1]

H̄νd
2
0

ϵ

)
= O

(
inf

ν∈[0,1]

[
Lν
ϵ

]2/(1+ν)
d2
0

)
iterations to reach F (x∗k )− F ∗ ≤ ϵ.
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Our Approach: How to Avoid Line Search

Recall: F (xk+1)− F ∗ +
Hk

2
d2
k+1 ≤

Hk

2
d2
k + βk+1 −

Hk

2
r2k+1. (∗)

To make (dk ≡ ∥xk − x∗∥)-terms telescope, require Hk ≤ Hk+1 and rewrite

F (xk+1)− F ∗ +
Hk+1

2
d2
k+1 −

Hk

2
d2
k ≤ βk+1 −

Hk

2
r2k+1 +

1

2
(Hk+1 − Hk)d

2
k+1

≤ βk+1 −
Hk

2
r2k+1 +

1

2
(Hk+1 − Hk)D

2.

Main idea: Choose Hk+1:
1

2
(Hk+1 − Hk)D

2 =
[
βk+1 −

Hk

2
r2k+1

]
+

(#)

Then, we get easy-to-telescope recurrence:

F (xk+1)− F ∗ +
Hk+1

2
d2
k+1 ≤

Hk

2
d2
k + (Hk+1 − Hk)D

2,

which gives us, after telescoping,

F (x∗k )− F ∗ ≤ 1

k

[H0

2
d2
0 + (Hk − H0)D

2
]
≤ HkD

2

k
.
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Our Approach: Estimating growth rate of Hk

To estimate growth of Hk , use (#) and Hölder smoothness:

1

2
(Hk+1 − Hk)D

2 =
[
βk+1 −

Hk

2
r2k+1

]
+
≤ (1− ν)L

2/(1−ν)
ν

2(1 + ν)H
(1+ν)/(1−ν)
k

.

Suppose we have Hk+1 instead of Hk in the right-hand side. This is

C ≥ Mp−1
k+1 (Mk+1 −Mk) ≥

∫Mk+1

Mk
tp−1dt = 1

p (M
p
k+1 −Mp

k ), which

means that Mk ≤ (pCk)1/p (provided that M0 = 0). Thus,

Hk ≲ inf
ν∈[0,1]

Lν
D1−ν k

(1−ν)/2,

and F (x∗k )− F ∗ ≤ HkD
2

k ≲ inf
ν∈[0,1]

LνD1+ν

k(1+ν)/2 ≤ ϵ in

O

(
inf

ν∈[0,1]

[
Lν
ϵ

]2/(1+ν)
D2

)
iterations.
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Our Approach: Final Comments

To replace Hk with Hk+1, we go back to (∗), rewrite

F (xk+1)− F ∗ +
Hk+1

2
d2
k+1 −

Hk

2
d2
k ≤ βk+1 −

Hk

2
r2k+1 +

1

2
(Hk+1 − Hk)D

2

≤ βk+1 −
Hk+1

2
r2k+1 + (Hk+1 − Hk)D

2,

and choose Hk+1 from (Hk+1 − Hk)D
2 =

[
βk+1 −

Hk+1

2
r2k+1

]
+

(#′).

The explicit solution is Hk+1 = Hk +
[β̂k+1 − Hk

2 r2k+1]+

D2 + 1
2 r

2
k+1

.

Proceed as before: F (xk+1)− F ∗ + Hk+1

2 d2
k+1 ≤

Hk
2 d2

k + 2(Hk+1 − Hk)D
2,

to get

F (x∗k )− F ∗ ≤ 2HkD
2

k
≤ inf

ν∈[0,1]

2LνD
1+ν

k(1+ν)/2
.
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Stochastic Oracle: Outline of Analysis

Method: xk+1 = argminx{⟨gk , x⟩+ ψ(x) + Hk
2 ∥x − xk∥2}, gk ∼ ĝ(xk).

Opt. condition for xk+1 gives (for dk := ∥xk − x∗∥, rk+1 := ∥xk+1 − xk∥)

f (xk) + ⟨gk , xk+1 − xk⟩+ ψ(xk+1) +
Hk

2
r2k+1 +

Hk

2
d2
k+1

≤ f (xk) + ⟨gk , x∗ − xk⟩+ ψ(x∗) +
Hk

2
d2
k .

Using Eξk [f (xk) + ⟨gk , x∗ − xk⟩] = f (xk) + ⟨∇f (xk), x
∗ − xk⟩ ≤ f (x∗)

(assuming that gk ≡ g(xk , ξk)) and rearranging as before, we get

E
[
F (xk+1)− F ∗ +

Hk+1

2
d2
k+1 −

Hk

2
d2
k

]
≤ E

[
βk+1 −

Hk+1

2
r2k+1 + (Hk+1 − Hk)D

2
]
,

where βk+1 := f (xk+1)− f (xk)− ⟨gk , xk+1 − xk⟩.
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Stochastic Oracle: Outline of Analysis – II

Our recurrence:

E
[
F (xk+1)− F ∗ +

Hk+1

2
d2
k+1 −

Hk

2
d2
k

]
≤ E

[
βk+1 −

Hk+1

2
r2k+1 + (Hk+1 − Hk)D

2
]
,

where βk+1 := f (xk+1)− f (xk)− ⟨gk , xk+1 − xk⟩.

Note: Cannot compute βk+1!

Main idea: Estimate βk+1 ≤ ⟨∇f (xk+1)− gk , xk+1 − xk⟩ = Eξk+1
[β̂k+1],

where β̂k+1 := ⟨gk+1 − gk , xk+1 − xk⟩ can be computed, and choose Hk+1

from equation (Hk+1 − Hk)D
2 =

[
β̂k+1 −

Hk+1

2
r2k+1

]
+

This gives us, as before,

E[F (x̄k)]− F ∗ ≤ 2E[Hk ]D
2

k
.
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Stochastic Oracle: Estimating growth of Hk

To estimate growth of Hk , we first estimate

β̂k+1 ≡ ⟨∇f (xk+1)−∇f (xk) + ∆k+1, xk+1 − xk⟩ ≤ Lνr
1+ν
k+1 + σk+1rk+1,

where ∆k+1 := δk+1 − δk with δk := gk −∇f (xk), and σk+1 := ∥∆k+1∥
(note: E[σ2k+1] ≤ 2σ2).

This gives us

(Hk+1 − Hk)D
2 =

[
β̂k+1 −

Hk+1

2
r2k+1

]
+
≲

(1− ν)L
2/(1−ν)
ν

(1 + ν)H
(1+ν)/(1−ν)
k+1

+
σ2k+1

Hk+1
.

Analyzing recurrence gives Hk ≤ O
(

Lν
D1−ν k

(1−ν)/2 + 1
D (

∑k
i=1 σ

2
i )

1/2
)
, so

E[Hk ] ≤ O
(

inf
ν∈[0,1]

Lν
D1−ν k

(1−ν)/2 +
σ

D

√
k
)
.
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Comparison with AdaGrad-type Methods

Recall main recurrence: (for β̂k+1 := ⟨gk+1 − gk , xk+1 − xk⟩)

E
[
F (xk+1)−F ∗+

Hk+1

2
d2
k+1−

Hk

2
d2
k

]
≤ E

[
β̂k+1−

Hk+1

2
r2k+1+(Hk+1−Hk)D

2
]

Note that (for γk+1 := ∥gk+1 − gk∥)

β̂k+1 −
Hk+1

2
r2k+1 ≤ γk+1rk+1 −

Hk+1

2
r2k+1 ≤

γ2k+1

2Hk+1
.

So in our alg., (Hk+1 − Hk)D
2 = [β̂k+1 − Hk+1

2 r2k+1]+ ≤ γ2k+1

2Hk+1
, i.e.,

Hk ≤ H ′
k :=

1

D

( k∑
i=1

γ2i

)1/2
(AdaGrad step-size coefficient)

Thus, our “step-size” 1
Hk

is smaller than 1
H′

k
of AdaGrad.

AdaGrad corresponds to balance equation (Hk+1 − Hk)D
2 =

γ2k+1

2Hk+1
.
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Conclusions



Conclusions

We presented Universal gradient methods for Stochastic Optimization.

They only need to know diameter D of feasible set, and automatically
adjust to smoothness class (ν, Lν) and oracle’s variance σ.

These are standard methods which use a special rule for adjusting
step-size coefficients based on the idea of balancing the two error
terms arising in the convergence analysis.

Paper

Universal Gradient Methods for Stochastic Convex Optimization
arXiv:2402.03210

Thank you!
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