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Part |: Motivation



Stochastic Gradient Method (SGD)

Problem:
f* = min f(x),

xeQ
where f: R” — R is a convex function, @ C R" is a simple convex set.
Stochastic gradient oracle: Vector g(x,§) € R”, £ ~ P¢ with
Eelg(x, &) = VF(x).
SGD algorithm:
Xip1 = mQ(xk — higr), 8k = &(xk,&k)s &k ~ Pe,

where mq(x) = argmin,q|lx — y|| is the Euclidean projection onto Q.

Main question: How to choose step sizes hy?
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Choice of Step Size in SGD

Assume that Q is bounded: ||x — y|| < D, Vx,y € Q.

Nonsmooth optimization: E[||g(x,¢)[]?] < M2,

D MD
hk=—Fr— = E[f(x%)]-f <O :
TN = F(%] - £ < 0(~)
where )'(k:% f-(:_olx,-.

IVF(x) = VE(y)Il < LlIx = yll;

Smooth optimization: { ) )
Eelllg(x, &) — VF(x)[|] < o2

1 D
h, = min{

= S UCVRVEL G S

- _l’_ .
kK Vk
Can the algorithm choose step sizes automatically for us?
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Line Search for Deterministic Optimization

Universal Gradient Method (UGM): [Nesterov'14]

Input: Initial point xg € @, target accuracy € > 0, initial guess [o>0
for k > 0 do

Set Lk,O = Zk.
for i > 0 do
Compute x441,; = 7@ (Xk — ﬁ,in(xk)).
if
Ly, €
F(xar1,i) < FOu)H (V) Xaer1,i—xi)+ =55 [ Xk 1= x| [2 45,
then
set i, = i and break the loop.
Set Lk,,'+1 = 2Lk7,'.
Set Xk+1 = Xk+1,ixs L, = Lk,ik and Lk+1 = Lk/2.
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Convergence Rate

Hélder class: ||V (x) — VF(y)| < L.|lx —y|”. v € [0,1].

e For properly chosen Lo and the “best point” x; in UGM:

2/(14+v
kz(ﬁ)/( D2 f) - <e

€

@ Line search is cheap: two iterations on average (+ log-cost warmup).

@ Universal Fast Gradient Method [Nesterov'14]:

1+v\ 2/(1+3v)
k > (L”D ) =  f(x)—-f"<e

€
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AdaGrad Method [Duchi et al."11]

AdaGrad algorithm:
b
- .
> i—oll&ill?

Foundation of nowadays popular Adam, RMSProp, . ...

X1 = mQ(Xk — hkgk), hy =

Convergence rate:
MD

E[f(x)] — f* < —.
[f (%) = 7%
Main issues:
@ Smooth optimization?

@ Acceleration?
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Recent Work

UniXGrad: [Kavis et al.’19]

Input: Initial point yp € Q, diameter D.

Set Xp = yo, Ao =0

for k> 1do
Set ayx = k, Ax = Ak—1 + ak, Tk = ak/Ax.
Compute Zx = (1 — Tk)Xk + ThYk—1, gf = g(Ek,gf) for 55 ~ Ps.
Set xx = mQ(Yk—1 — ak7k&E)-
Compute Xk = (1 — k) Xk—1 + Tkxk, 8 = &(Xk, &F) for &F ~ Pe.
Set yj = mQ(Yk—1 — akNk&L)-

Step size:
2D
2 Z(|12
i e el
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Recent Work (cont'd)

Convergence rates for UniXGrad:

D MD
Nonsmooth case: E[f(x)] — f* < O(p + W),
LD? D
Smooth case: E[f(xk)] — f* < O(Tz + %)

Note: “Incorrect” rate for nonsmooth case (wrong physical dimension)
<= bad choice of 7, (not scale-invariant).

Another line of work: [Ene et al.’21]
e AdaGrad+ and AdaACSA with rates for smooth / nonsmooth cases.

@ Also non-scale-invariant step size + strange log factors.
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Motivation for This Work

Minor: Propose improved versions of UniXGrad, etc. with scale-invariant
step sizes and “correct” convergence rates.

Major: Develop “fully universal” stochastic gradient methods with

guarantees for the entire Holder class (c.f. deterministic methods with line
search).

= More efficient practical algorithms? J
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Part Il: Our Results



Problem Formulation

Composite optimization problem:

F*= min {F(x)=f(x)+¥(x)},

xedom

where f and v are convex functions, v is simple.

Assumptions:
@ Bounded domain: |[x —y|| < D, Vx,y € dom.
@ Holder gradient: ||Vf(x) — Vf(y)|| < L||x—y|", v €[0,1].
© Unbiased stochastic oracle: E¢[g(x,&)] = VF(x).
@ Bounded variance: E¢[||g(x,&) — VF(x)]?] < o2.

Discussion:
@ Most important example: 1 is {0, +o0} indicator of set Q.
e v = 0: better class than ||Vf(x)|| < M.
@ Our methods require D and automatically adapt to o, v and L,,.
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Universal Stochastic Gradient Method
Input: Initial point xg € dom ), diameter D.

Set Hp = 0 and compute gy = g(xp, o) for {o ~ Pe.
for Kk > 0 do

Compute xxy1 = argmin, cdom 1 {8k, X) + ¥ (x) + %Hx — xk||?}.
Compute gxt1 = g(Xk+1,Ek+1) for Sy ~ Pe.
Update Hii1 = Hi + [Bisr — Her2 14 /(D% + 3r2.4),

where ri 1 = ka+1 - XkH and Bk+1 = <gk+1 — 8k Xk+1 — Xk)-

° Bk+1 is a stoch. estimate of symmetrized Bregman distance:
Bf(x,}/) = <Vf(y) - Vf(X),y - X> = ﬁf(xay) + ﬁf(y,X),

where 3r(x, y) = f(y) = f(x) = (VF(x),y —x).
@ Convergence rate for xx = %fozl Xj:

_ 2E[HD? . . 8L,DY" 40D
—-Fr<——— =" < .
ElF (X)) - F* < k - uel?o,1] Kz " vk
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Formula for Step Size: Explanation in Deterministic Case

@ Doing convergence analysis, we come to inequality

Hy Hit1 »
* o K2 +
_2Pk >

His1 5

1
Uk = E(Hkﬂ — Hi) Py + r/%+1) + [5k+1 5 rk+1}

F(xxk41) — F =1 + Uk,

where pi = [[xc — x*||, rks1 = [Ixk1 — Xkl B = Br(xk, Xier1)-
@ A reasonable idea is to require that H, < Hy1, bound piy1 < D and
rk+1 < D, and choose Hi41 to balance the two terms in Uy:

H
(Hk11 — Hk)D? = [5k+1 k2+1 Mest n (*)

@ Solving (*), we get formula for Hx,1 and simple recurrence

H H
F(xey) — F* < —Xp2 — KL

S 5Pk Ty Pis1 + 2(Hip1 — Hi) D
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Universal Stochastic Fast Gradient Method

Input: Initial point xy € dom ), diameter D.

Set vog = xg, Hp = Ap = 0.

for k >0 do
Set aky1 = k+ 1, Akr1 = Ak + ak+1, Tk = ak+1/Ak+1-
Compute yx = (1 — 7¢)xk + Tkvk and gy = g(y«, &) for & ~ Pe.
Set Vi1 = argmin,cdom y{akt1(g, %) + P (x)] + F[x — vi|?}.
Xer1 = (1= i) Xk + Tivier1, k1 = 8(Xk+15§511) §kqq ~ Pe.
Update Hiy1 = Hic + [Aks1Brar — Zer2 1]+ /(D + 3r2,1),

where i1 = [[vipr — vie|l and Bis1 = (g1 — &7 Xkt1 — V&)

Convergence rate:

4E[Hk]D2<_ 32L,D¥" 80D

—F*< .
E[F(x)] — F" < Kkt D) S +\/37
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Choice of Diameter

@ Our methods are not fully adaptive. They require knowledge of
diameter D, as do all other existing adaptive stochastic methods.

@ General adaptation to D is an interesting open question.

@ However, for some important applications, D is known!
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Example from Machine Learning

Regularized Empirical Risk Minimization:

x€eR"

min{;gﬁ-(x)—i—;]]xlf}, (ERM)

where f; is the “loss function" for ith object (e.g., fi(x) = In(1 + e{@))).

@ We solve this problem for many values of A and select the best
model x using cross-validation.

o ERM is equivalent to

mR{;; () : x|l < D/2}.

(Perfect problem for our methods!)

@ Instead of searching for best A, we can search for best D.

Anton Rodomanov Universal Stochastic Gradient Methods 15/16



Open Questions

Unbounded domain: D — R > ||xo — x*||?
Diagonal version (different step size for each coordinate)?

Unconstrained nonconvex optimization: rates for ||V f(xx)||?

Thank you!
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