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Motivation



Stochastic Convex Optimization

Problem:

F* = min f(x
min f(x),

where f: R? — R is a convex function, @ C R is a simple convex set.

Stochastic gradient oracle: Random vector g(x, &) € R? (€isar.v.),
Eelg(x,§)] = VF(x).

Main example: f(x) = E¢[f(x,&)]. Then, g(x,&) = Vif(x,§).

n

Eg: f(x)=1 Z filx) = g(x,§) =% Zb: Vfe.(x), where

=1

& =(&,...,&p) with i.i.d. components from Unif({1,...,n}).
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Stochastic Gradient Method (SGD)

Problem: f* = min,¢q f(x).
Stochastic Gradient Method (SGD):

X1 = TQ(Xk — hkgk), 8k = B(xk),
where To(x) = argmin ¢ ql|x — y| is the Euclidean projection onto Q.

Main questions:
@ How to choose step sizes hy?

@ What is the rate of convergence?
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Convergence Guarantees for SGD

Assume that:
e Q@ is bounded: [[x —y| <D, Vx,y € Q.
e Variance of g is bounded: E¢[|g(x, &) — VF(x)|?] <02, Vx € Q.

Nonsmooth optimization: ||Vf(x)|.« < Lo, Vx € Q.

hy = o —  E[f(x)] - < o((LO}U)D
V(B +o2)(k+1) k
where X, = k k 01 X;.

Smooth optimization: |Vf(x) — Vf(y)|« < Li|lx —y|, Vx,y € Q.

1 D Li;D? oD
me=min{ol 2} = Bl - < o(B2 4 07
k= TR [f (%) p N

).
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Discussion

@ What we saw previously is the standard approach in Optimization:

@ Fix a certain Problem class P.
@ Develop a “good” method tailored to P.

@ However:
» A specific problem may belong to multiple problem classes.
» Different problems may belong to different problem classes.

o ldeally, we would like to have universal algorithms suitable for
multiple problem classes at the same time.
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Universal Gradient Methods [Nesterov 2015]

Problem: min,cq f(x).

Hélder constants: H, .=  sup %, v € [0,1].
x,y€EQix#y d
Note:
o v =1 ||VFf(x) = VF(y)ll« < Hi|lx — y|l (Lipschitz gradient).

o v=0: ||[VFf(x) — VF(y)|l« < Ho (contains Lipschitz functions).
This class is better than ||V f(x)|« < Lo.

e If H,,H,, < 400 for some 11 < vy, then H, < 400,V € |11, 13].

Main assumption: There exists v € [0, 1] such that H, < +o0.
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Universal Gradient Methods — Il

Method: xjy1 = mQ(xk — MLka(xk)), where M is found by line search
to satisfy the following condition:

€

M
F(xiern) < FO) + (VF(0) X1 = 30 + 5 [xiers = i+ 5

2
Efficiency bound: O( inf <i> 1+" D2> iters to f(x;) — f* <e.

velo,1]\ €

Great methods but they do not work with stochastic oracle! )

HVD1+V 2V
Universal Fast Gradient Method: O< inf ( >1+3
vel0,1] €

Anton Rodomanov Universality of AdaGrad Stepsizes 7/26



AdaGrad Methods

AdaGrad [McMahan and Streeter 2010; Duchi et al. 2011]: (gx = &(x«))
D

——
2 i—oll&illd

Foundation of nowadays popular Adam, RMSProp, . ...

Xkp1 = TQ(Xk — hkgk), hi =

Convergence rate [Levy et al. 2018]: If Vf(x*) = 0, then
LoD LyD? D
LD LD, ‘7>’
Vk' k vk

(Lo, Ly are the Lipschitz constants of f, Vf; o is the variance.)

E[f (%)] — F* < o<min{

UniXGrad [Kavis et al. 2019]: Accelerated gradient method with
AdaGrad step sizes based on difference of gradients. Convergence rate:

. (LoD L1D? oD
O(mln{ﬂ,/@}—f'\/;)
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Motivation and Related Work

Develop “fully universal” gradient methods that automatically adjust to
the right Holder class and oracle’s variance. J

Related work:

@ Universal methods with line search [Nesterov 2015; Grapiglia and
Nesterov 2017; Grapiglia and Nesterov 2020; Doikov and Nesterov 2021;
Doikov, Mishchenko, et al. 2024]. Only for deterministic optimization.

@ Adaptive methods for stochastic optimization [McMahan and Streeter
2010; Duchi et al. 2011; Levy et al. 2018; Kavis et al. 2019; Ene et al. 2021]
No specific guarantees for Holder class.

o Parameter-free methods [Orabona 2014; Cutkosky and Boahen 2017;
Cutkosky and Orabona 2018; Jacobsen and Cutkosky 2023; Carmon and
Hinder 2022; Defazio and Mishchenko 2023] Slightly different focus, also
no specific guarantees for Holder class (with stochastic oracle).
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Universal Stochastic Gradient Methods [Rodomanov et al. 2024]

Problem: rcri1in 1/)[F(x) = f(x) + ¢¥(x)], f and ® are convex, 1 is simple.
xeaom

Assumptions:
Q Holder gradient: ||Vf(x) — VFf(y)|l« < H.|x — y|", v € [0,1].
@ Bounded domain: ||[x —y|| < D, Vx,y € dom.

@ Stochastic oracle: E¢[g(x,&)] = VF(x), E¢[|lg(x, &) — VF(x)|]?] < o2

Methods using (modified) AdaGrad stepsizes and needing to know only D:

. : H,D*" oD
@ Basic method: O<y€|r[10f1] P 4 ﬂ)

i H,Dt” oD
@ Accelerated method: O <V€|?Of1] PEETYE 4 ﬂ)

This work: Show that AdaGrad stepsizes are even more universal.

J
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Main Algorithms and Results for Uniformly
Bounded Variance



Problem Formulation — |: Approximate Smoothness
Problem: r(?in 1Z)[F(x) = f(x) 4+ ¢¥(x)], f and ® are convex, 1 is simple.
xedom

Main assumption: f is approximately smooth: there exist Ls,d¢ > 0 and
f:RY 5 R, g: RY — RY such that, for any x,y € R, we have

0< [Br.50y) = Fly) = F(x) = &0,y = x)] < L lly = x| + 6

NB: This is the (0, L)-oracle introduced by [Devolder et al. 2013].
Examples:
o fis L-smooth <= (f,g) = (f,Vf)with Lr =L, 6 =0
o fis (v, H,)-Holder smooth = (f,g) = (f, V) with
2
L = [ﬁ]iﬁHﬁ” and any 0 > 0.
o #(x) < f(x) < ¢(x) + 9, ¥x, with L-smooth ¢ = (f,&) = (¢, V)
with L = L, ¢ = 9.
o f(x) = max, W(x,u) with str. concave V¥, u(x) ~; argmax, V(x, u)
= f(x) = V(x, d(x)), 8(x) = V,V(x, a(x)) with 6r = 6.
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Problem Formulation — Il

Problem: F* = Xerglgrr;w[F( x) = f(x) + ¢¥(x)].

Assumptions:

Q fis (Jr, Lf)-approximately smooth with components (

8)-

f,
@ f can be accessed only via unbiased stochastic oracle g for g:
Eelg(x,€)] = 8(x).
© Uniformly bounded variance: Varg(x) = E¢[||lg(x, &) — g(x)[12] < o2.

© Bounded domain: ||x — y|| < D, ¥x,y € dom .

Note: Asm. 4 can always be ensured with D = 2Ry whenever we know

Ro > ||xo — x*|| by considering F* = (rjmn [Fp(x) = f(x) + ¥p(x)],
xedo

where ¥p = 1 + Indg, with By = {x : || x — xo|| < Ro}.
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Basic Universal Gradient Method

Algorithm 1 UniSgd; ,,(x0; D)

80 = &(x0)-
for k=0,1...do
Xi41 = Proxy (xk, gk, M), g1 = &(Xk+1)-

Mii1 = \/I\/If + prllgkss — &ll?.

Prox-mapping: Prox,(x,g, M) = argmin{{g,y) +¥(y) + ¥ |y — x||?}.
K yEdom
Output point: x, = % > X
i=1

L¢D? oD
: E[F(%)] — F* < — .
Convergence rate: E[F(x)] < O< P + N + (5f>
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Accelerated Universal Gradient Method

Algorithm 2 UniFastSgd; ,,(x0; D)

Vo = X0, M():AOZO.

for k=0,1,... do
k1 = §(k +1), A1 = Ak + a4t
Yk = A+ 2 v, gy = (k).
Vk4+1 = PrOXQ/,(Vk 8y I\/Ik/ak+1).
Xk+1 = %Xk + A Vi1
8xi11 = g(xk—I—l)-

Micr = /M2 + %2 |lgs, . — g3, 12

L¢D? D
Convergence rate: E[F(xx)] — F* < O( 22 + (\7/; + k5f>
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Example: Holder Smooth Functions
Suppose f is (v, H,)-Holder smooth. Then, f as approximately smooth

- 2
with (F,) = (£, VF), arbitrary 6¢ > 0 and Ly ~ [L]55 H ™.
For UniSgd, we get, for Fy = E[F(Xk)] — F*,

2
LiD? oD HX"D? oD
st "‘7‘*‘51“\‘7_,,"- + Of.
k \/E ké;ﬁ»u \/E

Minimizing this expression in df, we get

2
HVDlJrI/ oD ) HVDlJrI/ T g2D?2
F. <O — | < 0 . calls.
kS ( kHTV +\/E) <€ In ([ . + 2 orac. calls

Similar reasoning for UniFastSgd gives, for Fix = E[F(xk)] — F¥,

H, D oD H, D55 2p2
FE<ol 177V <¢ in of |2 . calls.
kS ( k1+23V +\/E> <€ In ([ c ] + 2 )orac calls
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Implicit Variance Reduction



Problem Formulation
Problem: F* = min [F(x) = f(x)+ ¥(x)].
xedom ¢
Assumptions:
@ fis (6¢, Lf)-approximately smooth with components (f, ).
@ Bounded domain: ||x — y[| < D, Vx,y € dom.

© f can be accessed only via unbiased stochastic oracle g for g:
Eelg(x,£)] = &(x).

Goal: Express complexity bounds in terms of 02 := Varg(x*) instead of 02.J

New assumption on variance

The variance Varg(x, y) = E¢[[[g(x. &) — g(y. )] — [&(x) — &W)]I[E] is
approximately smooth w.r.t. f:

Varg(x,y) < 2Lg[Br 7 z(x, ¥) + dz]-
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Approximate Smoothness of Variance

Condition: Varg(x,y) < 2Lg[Bf 7 z(x,y) + dg], where
Varg(x, y) = E¢[ll[g(x,€) — g(v,€)] — [8(x) — EBWIE]-
Note:

@ Varg(x,y) is the usual variance of g(x,&) — g(y,§).

@ If g3 is the mini-batch version of g of size b, then
Varg, (x,y) = %Varg(x,y), and hence L;, = %Lg, 0z, = 0z

Main example: f(x) = E¢[fe(x)], where each f¢ is convex and

(0¢, L¢)-approx. smooth with components (fg,gg). Then, g(x,&) = 8¢(x)
satisfies the variance condition with f(x) = E¢[fz(x)], &(x) = E¢[ge(x)],
and Lz = Lax, 0z = ﬁEE[L@g] (< E¢[0¢]), where Lmax = supg Le.

Explanation:

Varg(x,y) < Bellge(x) — 2e()I12] < Be [2Le (5 7 5. (x,0) + )]
< 2L max (Eﬁ[ﬂfg,fg,éﬁ (¥ +dz) = 2L max[Br 7 5 (%, ¥) + dg]-
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Efficiency Bounds

NB: Consider the same methods as before (no modifications).

(Lr + Lg)D?*  0.D
0f 4+ 0z ).
P + ND +0f + 0z
@ When df = 6z = 0, we recover the well-known rates for SGD with
predefined stepsizes based on the knowledge of all the constants.

UniSgd: O<

L¢,D?  [;D*  0.D
N S +k5f+6§>.

UniFastSgd: O( 2 P NG
o Different rates for L¢ and Lz terms are unavoidable [Woodworth and
Srebro 2021].

@ For the special case r = d; = 0, similar results were obtained in
[Woodworth and Srebro 2021; llandarideva et al. 2023] assuming that all
constants are known.

Anton Rodomanov Universality of AdaGrad Stepsizes 18 /26



Example: Problem with Holder Smooth Components

Problem: f(x) = E¢[f:(x)] with convex and (v, H¢(v))-Holder smooth f.

b
Standard mini-batch oracle: gy(x, &) = £ > Vi, (x).
j=1

Method Stochastic-Oracle (SO) Complexity

UniSgd (W) v 4 1 mln{U2D (Hmax(V))H%Dz 2D2}
UniFastSgd (M)l+3u +3 mm{aezm (Hmax( ))1+u D2 4 % D }

€

Notation: o2 =

sup Varg (x) = sup E[[|[V(x) — VF(x)|3],

xedom ¢ xedom ¢

02 = Varg (x*) = E¢[||Vf(x*) — VF(x*)||2], Hf(v) is the Holder constant
of degree v for f.
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Explicit Variance Reduction with SVRG



Universal SVRG

SVRG Oracle: G(x.&) = g(x,€) — g(%,€) + Z(%).

Algorithm 3 UniSvrg; ; . (x0; D)
)?0 = X0, MO =0.
fort=0,1,... do
Gy = SvrgOrac, z(%).
(Rex1, Xe41, Mey1) = Unngdéhw(xt, M., 2t1; D).

Algorithm 4 UniSgd, ,,(x0, Mo, N; D)

80 = &(x0)-
for k=0,...,N—1do
X1 = Proxy (xk, ks Mi), 8k+1 = 8(Xk+1)-

Myy1 = \//V’f + oz llgk+1 — gkli2

return (Xy, xn, My), where Xy = % ZINZI X;.
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Universal Fast SVRG

Algorithm 5 UniFastSvrg; z ,,(x0, N; D)

Xo = argminx{<g(X0)7X> + w(X)}v vo = X0, Mo =0, Ag = %
fort=0,1,... do

art1 = VA:, Aty1=Ar+arq1.
(Re+1, Ver1, Mey1) = UniTriSvrgEpochg 5 4, (%t, Ve, My, A, aey1, N; D).

Algorithm 6 UniTriSvrgEpoch, 5 (X, vo, Mo, A, a, N; D)

AL =A+a x= %)"( + -V G = SvrgOrac, z(X), Gx, = G(x0).
for k=0,...,N—1do

Vk4+1 = PI’OXw(Vk, ka, Mk/a). R

X1 = 2K+ Vi1, Gy = G(xks1).

2
Mii1 = /M + 221G,y — G2

return (Xy, vy, My), where Xy = % 221:1 X
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Geometry of UniTriSvrgEpoch

Vk+1

Lh+1
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Efficiency Guarantees

SO complexity

Method Convergence rate
UmSgd UD U* + LgD
. L D a'D oxD
UniFastSgd =7 + kdr + m|n{f e 4 LeD”
UniSvrg % +0f + 5§
(Lf+Lg)D2

UniFastSvrg + t(0f + 0z)

n(t—log log n)?2

2t + nlogt

Note: Assuming that querying g is n times more expensive than g.
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Example: Problem with Holder Smooth Components

Problem: f(x) = E¢[f¢(x)] with convex and (v, H¢(v))-Holder smooth f;.

b
Standard mini-batch oracle: gu(x, &) = £ Y. Vi (x).
j=1

Method Stochastic-Oracle (SO) Complexity

UniSgd (BP0 o f min{ 2287, (Hha) £ p2 4. 222%)
UniFastSgd (7Hf(”)DHV)1+% +1 min{"iéﬁ, (H’“"EX(V)) v D2 4 D =}
UniSvrg  [Ny(e) = (w)m + %(HLX(V))H%Dﬂ + np IogJr N, (€)

€

[anf(V)D +v]7

”b Hmax

UniFastSvrg + [W] = + np log log ny,

Note: Assuming that querying g is n, times more expensive than gp.
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Experiments & Conclusions



Experiments

n
Polyhderon feasibility problem: ”n|1|i<nR{f(x) =15 [(a, x) — bi]4
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Conclusions

@ We showed that AdaGrad stepsizes can be applied, in a unified
manner, in a large variety of situations, leading to universal methods
suitable for multiple problem classes at the same time.

@ The corresponding methods only need to know diameter D of feasible
set, and automatically adapt to the best possible problem class
described by various smoothness and variance assumptions.

@ The universality is not for free: we need to know a good estimate
of D. Adaptation to D could be addressed using the recently
developed techniques from parameter-free methods. This is an
important direction for future work.
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