Universality of AdaGrad Stepsizes for Stochastic Optimization: Inexact Oracle, Acceleration and Variance Reduction

Anton Rodomanov (CISPA)

Joint work with Xiaowen Jiang (CISPA) and Sebastian Stich (CISPA)

28 August 2024 ALGOPT 2024 Workshop on Algorithmic Optimization Louvain-la-Neuve, Belgium

Motivation

Stochastic Convex Optimization

Problem:

$$f^* = \min_{x \in Q} f(x),$$

where $f: \mathbb{R}^d \to \mathbb{R}$ is a convex function, $Q \subseteq \mathbb{R}^d$ is a simple convex set.

Stochastic gradient oracle: Random vector $g(x,\xi) \in \mathbb{R}^d$ (ξ is a r.v.),

$$\mathbb{E}_{\xi}[g(x,\xi)] = \nabla f(x).$$

Main example: $f(x) = \mathbb{E}_{\xi}[f_{\xi}(x)]$. Then, $g(x,\xi) = \nabla f_{\xi}(x)$.

Stochastic Gradient Method (SGD)

Problem: $f^* = \min_{x \in Q} f(x)$.

Stochastic Gradient Method (SGD):

$$x_{k+1} = \pi_Q(x_k - h_k g_k), \quad g_k \cong \hat{g}(x_k),$$

where $\pi_Q(x) = \operatorname{argmin}_{y \in Q} ||x - y||$ is the Euclidean projection onto Q.

Main questions:

- How to choose step sizes h_k ?
- What is the rate of convergence?

Convergence Guarantees for SGD

Assume that:

- Q is bounded: $||x y|| \le D$, $\forall x, y \in Q$.
- Variance of \hat{g} is bounded: $\mathbb{E}_{\xi}[\|g(x,\xi) \nabla f(x)\|_*^2] \leq \sigma^2, \ \forall x \in Q.$

Nonsmooth optimization: $\|\nabla f(x)\|_* \leq L_0$, $\forall x \in Q$.

$$h_k = rac{D}{\sqrt{(L_0^2 + \sigma^2)(k+1)}} \quad \implies \quad \mathbb{E}[f(ar{x}_k)] - f^* \leq O\Big(rac{(L_0 + \sigma)D}{\sqrt{k}}\Big),$$

where $\bar{x}_k = \frac{1}{k} \sum_{i=0}^{k-1} x_i$.

Smooth optimization: $\|\nabla f(x) - \nabla f(y)\|_* \le L_1 \|x - y\|$, $\forall x, y \in Q$.

$$h_k = \frac{1}{L_1 + \frac{\sigma}{D}\sqrt{k+1}} \quad \Longrightarrow \quad \mathbb{E}[f(\bar{x}_k)] - f^* \leq O\left(\frac{L_1D^2}{k} + \frac{\sigma D}{\sqrt{k}}\right).$$

Discussion

- What we saw previously is the standard approach in Optimization:
 - **1** Fix a certain Problem class \mathcal{P} .
 - 2 Develop a "good" method tailored to \mathcal{P} .
- However:
 - A specific problem may belong to multiple problem classes.
 - Different problems may belong to different problem classes.
- Ideally, we would like to have universal algorithms suitable for multiple problem classes at the same time.

Universal Gradient Methods [Nesterov 2015]

Problem: $\min_{x \in Q} f(x)$.

Hölder constants:
$$H_{\nu} \coloneqq \sup_{x,y \in Q; x \neq y} \frac{\|\nabla f(x) - \nabla f(y)\|_*}{\|x - y\|^{\nu}}, \ \nu \in [0, 1].$$

Note:

- $\nu = 1$: $\|\nabla f(x) \nabla f(y)\|_* \le H_1 \|x y\|$ (Lipschitz gradient).
- $\nu = 0$: $\|\nabla f(x) \nabla f(y)\|_* \le H_0$ (contains Lipschitz functions). This class is better than $\|\nabla f(x)\|_* \le L_0$.
- If $H_{\nu_1}, H_{\nu_2} < +\infty$ for some $\nu_1 \leq \nu_2$, then $H_{\nu} < +\infty, \forall \nu \in [\nu_1, \nu_2]$.

Main assumption: There exists $\nu \in [0,1]$ such that $H_{\nu} < +\infty$.

Universal Gradient Methods - II

Method: $x_{k+1} = \pi_Q(x_k - \frac{1}{M_k}\nabla f(x_k))$, where M_k is found by line search to satisfy the following condition:

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{M_k}{2} ||x_{k+1} - x_k||^2 + \frac{\epsilon}{2}.$$

Efficiency bound:
$$O\left(\inf_{\nu \in [0,1]} \left(\frac{H_{\nu}}{\epsilon}\right)^{\frac{2}{1+\nu}} D^2\right)$$
 iters to $f(x_k^*) - f^* \le \epsilon$.

Universal Fast Gradient Method:
$$O\left(\inf_{\nu \in [0,1]} \left(\frac{H_{\nu}D^{1+\nu}}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right)$$
.

Universal gradient methods for stochastic optimization?

Related Work: AdaGrad Methods

AdaGrad [McMahan and Streeter 2010; Duchi et al. 2011]: $(g_k \cong \hat{g}(x_k))$

$$x_{k+1} = \pi_Q(x_k - h_k g_k), \qquad h_k = \frac{D}{\sqrt{\sum_{i=0}^k ||g_i||_*^2}}.$$

Convergence rate [Levy et al. 2018]: If $\nabla f(x^*) = 0$, then

$$\mathbb{E}[f(\bar{x}_k)] - f^* \leq O\left(\min\left\{\frac{L_0 D}{\sqrt{k}}, \frac{L_1 D^2}{k}\right\} + \frac{\sigma D}{\sqrt{k}}\right),$$

(L_0 , L_1 are the Lipschitz constants of f, ∇f ; σ is the variance.)

UniXGrad [Kavis et al. 2019]: Accelerated gradient method with AdaGrad step sizes based on difference of gradients. Convergence rate:

$$O\left(\min\left\{\frac{L_0D}{\sqrt{k}}, \frac{L_1D^2}{k^2}\right\} + \frac{\sigma D}{\sqrt{k}}\right).$$

Our work: Fully-Universal AdaGrad methods.

Main Algorithms and Results for Uniformly Bounded Variance

Approximate Smoothness

A function $f: \mathbb{R}^d \to \mathbb{R}$ is called approximately smooth if there exist $L_f, \delta_f \geq 0$ and $\bar{f}: \mathbb{R}^d \to \mathbb{R}$, $\bar{g}: \mathbb{R}^d \to \mathbb{R}^d$ such that, for any $x, y \in \mathbb{R}^d$,

$$0 \leq \left[\beta_{f,\bar{f},\bar{g}}(x,y) := f(y) - \bar{f}(x) - \langle \bar{g}(x), y - x \rangle\right] \leq \frac{L_f}{2} \|y - x\|^2 + \delta_f.$$

NB: (\bar{f}, \bar{g}) is a (δ, L) -oracle introduced by [Devolder et al. 2013].

Examples:

- f is L-smooth \iff $(\bar{f}, \bar{g}) = (f, \nabla f)$ with $L_f = L$, $\delta_f = 0$
- f is (ν, H_{ν}) -Hölder smooth $\implies (\bar{f}, \bar{g}) = (f, \nabla f)$ with $L_f = [\frac{1-\nu}{2(1+\nu)\delta_f}]^{\frac{1-\nu}{1+\nu}}H_{\nu}^{\frac{2}{1+\nu}}$ and any $\delta_f > 0$.
- $\phi(x) \le f(x) \le \phi(x) + \delta$, $\forall x$, with L-smooth $\phi \implies (\bar{f}, \bar{g}) = (\phi, \nabla \phi)$ with $L_f = L$, $\delta_f = \delta$.
- $f(x) = \max_{u} \Psi(x, u)$ with str. concave Ψ , $\bar{u}(x) \approx_{\delta} \operatorname{argmax}_{u} \Psi(x, u)$ $\implies \bar{f}(x) = \Psi(x, \bar{u}(x)), \ \bar{g}(x) = \nabla_{u} \Psi(x, \bar{u}(x))$ with $\delta_{f} = \delta$.

Problem Formulation

Problem: $\min_{x \in \text{dom } \psi} [F(x) = f(x) + \psi(x)], f \text{ and } \psi \text{ are convex, } \psi \text{ is simple.}$

Assumptions:

- f is (δ_f, L_f) -approximately smooth with components (\bar{f}, \bar{g}) .
- ② f can be accessed only via a stochastic oracle \hat{g} such that $\mathbb{E}_{\xi}[g(x,\xi)] = \bar{g}(x)$.
- **1** Uniformly bounded variance: $\operatorname{Var}_{\hat{g}}(x) := \mathbb{E}_{\xi}[\|g(x,\xi) \bar{g}(x)\|_*^2] \leq \sigma^2$.
- **1** Bounded domain: $||x y|| \le D$, $\forall x, y \in \text{dom } \psi$.

Note: In general, \hat{g} may be biased: $\mathbb{E}_{\xi}[g(x,\xi)] = \bar{g}(x) \neq \nabla f(x)$.

Note: Asm. 4 can always be ensured with $D=2R_0$ whenever we know $R_0 \geq \|x_0 - x^*\|$ by considering $F^* = \min_{x \in \text{dom } \psi_D} [F_D(x) = f(x) + \psi_D(x)]$, where $\psi_D = \psi + \text{Ind}_{B_0}$ with $B_0 = \{x : \|x - x_0\| \leq R_0\}$.

Basic Universal Gradient Method

Algorithm 1 UniSgd $_{\hat{g},\psi}(x_0; D)$

$$g_0 \cong \hat{g}(x_0).$$

for $k = 0, 1 \dots$ do
 $x_{k+1} = \operatorname{Prox}_{\psi}(x_k, g_k, M_k), \quad g_{k+1} \cong \hat{g}(x_{k+1}).$
 $M_{k+1} = \sqrt{M_k^2 + \frac{1}{D^2} \|g_{k+1} - g_k\|_*^2}.$

Prox-mapping:
$$\operatorname{Prox}_{\psi}(x, g, M) = \underset{y \in \operatorname{dom} \psi}{\operatorname{argmin}} \{ \langle g, y \rangle + \psi(y) + \frac{M}{2} \|y - x\|^2 \}.$$

Output point: $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$.

Convergence rate:
$$\mathbb{E}[F(\bar{x}_k)] - F^* \leq O\left(\frac{L_f D^2}{k} + \frac{\sigma D}{\sqrt{k}} + \delta_f\right)$$
.

Accelerated Universal Gradient Method

Algorithm 2 UniFastSgd $_{\hat{g},\psi}(x_0; D)$

$$v_{0} = x_{0}, M_{0} = A_{0} = 0.$$
for $k = 0, 1, ...$ do
$$a_{k+1} = \frac{1}{2}(k+1), A_{k+1} = A_{k} + a_{k+1}$$

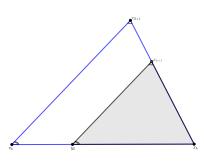
$$y_{k} = \frac{A_{k}}{A_{k+1}}x_{k} + \frac{a_{k+1}}{A_{k+1}}v_{k}, g_{y_{k}} \cong \hat{g}(y_{k}).$$

$$v_{k+1} = \operatorname{Prox}_{\psi}(v_{k}, g_{y_{k}}, M_{k}/a_{k+1}).$$

$$x_{k+1} = \frac{A_{k}}{A_{k+1}}x_{k} + \frac{a_{k+1}}{A_{k+1}}v_{k+1}.$$

$$g_{x_{k+1}} \cong \hat{g}(x_{k+1}).$$

$$M_{k+1} = \sqrt{M_{k}^{2} + \frac{a_{k+1}^{2}}{D^{2}}||g_{x_{k+1}} - g_{y_{k}}||_{*}^{2}}.$$



Convergence rate:
$$\mathbb{E}[F(x_k)] - F^* \leq O\left(\frac{L_f D^2}{k^2} + \frac{\sigma D}{\sqrt{k}} + \frac{k \delta_f}{k}\right)$$
.

Example: Hölder Smooth Functions

Suppose f is (ν, H_{ν}) -Hölder smooth. Then, f as approximately smooth with $(\bar{f}, \bar{g}) = (f, \nabla f)$, arbitrary $\delta_f > 0$ and $L_f \sim [\frac{1}{\delta_f}]^{\frac{1-\nu}{1+\nu}} H_{\nu}^{\frac{2}{1+\nu}}$.

For UniSgd, we get, for $F_k = \mathbb{E}[F(\bar{x}_k)] - F^*$,

$$F_k \lesssim \frac{L_f D^2}{k} + \frac{\sigma D}{\sqrt{k}} + \delta_f \sim \frac{H_{\nu}^{\frac{2}{1+\nu}} D^2}{k \delta_f^{\frac{1-\nu}{1+\nu}}} + \frac{\sigma D}{\sqrt{k}} + \delta_f.$$

Minimizing this expression in δ_f , we get

$$F_k \leq O\bigg(\frac{H_\nu D^{1+\nu}}{k^{\frac{1+\nu}{2}}} + \frac{\sigma D}{\sqrt{k}}\bigg) \leq \epsilon \quad \text{in} \quad O\bigg(\bigg[\frac{H_\nu D^{1+\nu}}{\epsilon}\bigg]^{\frac{2}{1+\nu}} + \frac{\sigma^2 D^2}{\epsilon^2}\bigg) \text{ orac. calls.}$$

Similar reasoning for UniFastSgd gives, for $F_k = \mathbb{E}[F(x_k)] - F^*$,

$$F_k \leq O\bigg(\frac{H_\nu D^{1+\nu}}{k^{\frac{1+3\nu}{2}}} + \frac{\sigma D}{\sqrt{k}}\bigg) \leq \epsilon \quad \text{in} \quad O\bigg(\bigg\lceil \frac{H_\nu D^{1+\nu}}{\epsilon} \bigg\rceil^{\frac{2}{1+3\nu}} + \frac{\sigma^2 D^2}{\epsilon^2}\bigg) \text{ orac. calls.}$$

Implicit Variance Reduction

Problem Formulation

Problem:
$$F^* = \min_{x \in \text{dom } \psi} [F(x) = f(x) + \psi(x)].$$

Assumptions:

- f is (δ_f, L_f) -approximately smooth with components (\bar{f}, \bar{g}) .
- ② Bounded domain: $||x y|| \le D$, $\forall x, y \in \text{dom } \psi$.
- **3** Stochastic oracle \hat{g} : $\mathbb{E}_{\xi}[g(x,\xi)] = \bar{g}(x)$.

Goal: Express complexity bounds in terms of $\sigma_*^2 := \operatorname{Var}_{\hat{g}}(x^*)$ instead of σ^2 .

Approximate Smoothness of Variance

New assumption on variance

$$\operatorname{Var}_{\hat{g}}(x,y) \coloneqq \mathbb{E}_{\xi}[\|[g(x,\xi) - g(y,\xi)] - [\bar{g}(x) - \bar{g}(y)]\|_{*}^{2}] \text{ satisfies}$$

$$\operatorname{Var}_{\hat{g}}(x,y) \le 2L_{\hat{g}}[\beta_{f,\bar{f},\bar{g}}(x,y) + \delta_{\hat{g}}].$$

c.f.:
$$\|\nabla f(x) - \nabla f(y)\|_*^2 \le 2L[f(y) - f(x) - \langle \nabla f(x), y - x \rangle].$$

Main example: $f(x) = \mathbb{E}_{\xi}[f_{\xi}(x)]$, where each f_{ξ} is convex and (δ_{ξ}, L_{ξ}) -approx. smooth with components $(\bar{f}_{\xi}, \bar{g}_{\xi})$. Then, $g(x, \xi) = \bar{g}_{\xi}(x)$ satisfies the variance condition with $\bar{f}(x) = \mathbb{E}_{\xi}[\bar{f}_{\xi}(x)]$, $\bar{g}(x) = \mathbb{E}_{\xi}[\bar{g}_{\xi}(x)]$, and $L_{\hat{g}} = L_{\text{max}}$, $\delta_{\hat{g}} = \mathbb{E}_{\xi}[\delta_{\xi}]$, where $L_{\text{max}} := \sup_{\xi} L_{\xi}$.

Note: If \hat{g}_b is the mini-batch version of \hat{g} of size b, then $\mathrm{Var}_{\hat{g}_b}(x,y) = \frac{1}{b}\,\mathrm{Var}_{\hat{g}}(x,y)$, and hence $L_{\hat{g}_b} = \frac{1}{b}L_{\hat{g}}$, $\delta_{\hat{g}_b} = \delta_{\hat{g}}$.

Another example: σ^2 -bounded variance $\implies L_{\hat{g}} = \frac{2\sigma^2}{\delta_{\hat{g}}}$ for any $\delta_{\hat{g}} > 0$.

Efficiency Bounds

NB: Consider the same methods as before (no modifications).

UniSgd:
$$O\left(\frac{(L_f + \frac{L_{\hat{g}}}{k})D^2}{k} + \frac{\sigma_* D}{\sqrt{k}} + \delta_f + \delta_{\hat{g}}\right)$$
.

• When $\delta_f = \delta_{\hat{g}} = 0$, we recover the well-known rates for SGD with predefined stepsizes based on the knowledge of all the constants.

UniFastSgd:
$$O\left(\frac{L_f D^2}{k^2} + \frac{L_{\hat{g}} D^2}{k} + \frac{\sigma_* D}{\sqrt{k}} + k\delta_f + \delta_{\hat{g}}\right)$$
.

- Different rates for L_f and $L_{\hat{g}}$ terms are unavoidable [Woodworth and Srebro 2021].
- For the special case $\delta_f = \delta_{\hat{g}} = 0$, similar results were obtained in [Woodworth and Srebro 2021; Ilandarideva et al. 2023] assuming that all constants are known.

Note: When \hat{g} has σ^2 -bounded variance, we get

$$\min_{\delta_{\hat{\mathbf{g}}}>0} \Big[\frac{L_{\hat{\mathbf{g}}}D^2}{k} + \delta_{\hat{\mathbf{g}}} \Big] = \min_{\delta_{\hat{\mathbf{g}}}>0} \Big[\frac{2\sigma^2D^2}{k\delta_{\hat{\mathbf{g}}}} + \delta_{\hat{\mathbf{g}}} \Big] = \frac{2\sqrt{2}\sigma D}{\sqrt{k}}.$$

Example: Problem with Hölder Smooth Components

Problem: $f(x) = \mathbb{E}_{\xi}[f_{\xi}(x)]$ with convex and $(\nu, H_{\xi}(\nu))$ -Hölder smooth f_{ξ} .

Standard mini-batch oracle:
$$g_b(x, \xi_{[b]}) = \frac{1}{b} \sum_{j=1}^b \nabla f_{\xi_j}(x)$$
.

Method	Stochastic-Oracle (SO) Complexity
UniSgd UniFastSgd	$ \begin{array}{l} \big(\frac{H_{\rm f}(\nu)D^{1+\nu}}{\epsilon}\big)^{\frac{2}{1+\nu}} + \frac{1}{b} \min \big\{\frac{\sigma^2 D^2}{\epsilon^2}, \big(\frac{H_{\rm max}(\nu)}{\epsilon}\big)^{\frac{2}{1+\nu}} D^2 + \frac{\sigma_*^2 D^2}{\epsilon^2} \big\} \\ \big(\frac{H_{\rm f}(\nu)D^{1+\nu}}{\epsilon}\big)^{\frac{2}{1+3\nu}} + \frac{1}{b} \min \big\{\frac{\sigma^2 D^2}{\epsilon^2}, \big(\frac{H_{\rm max}(\nu)}{\epsilon}\big)^{\frac{2}{1+\nu}} D^2 + \frac{\sigma_*^2 D^2}{\epsilon^2} \big\} \end{array}$

Notation:
$$\sigma^2 = \sup_{x \in \text{dom } \psi} \text{Var}_{\hat{g}_1}(x) \equiv \sup_{x \in \text{dom } \psi} \mathbb{E}_{\xi}[\|\nabla f_{\xi}(x) - \nabla f(x)\|_*^2],$$
 $\sigma^2_* = \text{Var}_{\hat{g}_1}(x^*) \equiv \mathbb{E}_{\xi}[\|\nabla f_{\xi}(x^*) - \nabla f(x^*)\|_*^2], \ H_f(\nu) \text{ is the H\"older constant of degree } \nu \text{ for } f.$

Explicit Variance Reduction with SVRG

Universal SVRG

SVRG Oracle:
$$G(x,\xi) = g(x,\xi) - g(\tilde{x},\xi) + \bar{g}(\tilde{x})$$
.

Algorithm 3 UniSvrg $_{\hat{g},\bar{g},\psi}(x_0;D)$

$$egin{aligned} & ilde{x}_0 = x_0, \ M_0 = 0. \ & ext{for} \ t = 0, 1, \dots \ & ext{do} \ & \hat{G}_t = \mathsf{SvrgOrac}_{\hat{g}, ar{g}}(ilde{x}_t). \ & ilde{(ilde{x}_{t+1}, x_{t+1}, M_{t+1})} \cong \mathsf{UniSgd}_{\hat{G}_t, \psi}(x_t, M_t, 2^{t+1}; D). \end{aligned}$$

Algorithm 4 UniSgd $_{\hat{g},\psi}(x_0, M_0, N; D)$

$$\begin{array}{l} g_0 \cong \hat{g}(x_0). \\ \text{for } k = 0, \dots, N-1 \text{ do} \\ x_{k+1} = \operatorname{Prox}_{\psi}(x_k, g_k, M_k), \ \ g_{k+1} \cong \hat{g}(x_{k+1}). \\ M_{k+1} = \sqrt{M_k^2 + \frac{1}{D^2} \|g_{k+1} - g_k\|_*^2}. \\ \text{return } (\bar{x}_N, x_N, M_N), \text{ where } \bar{x}_N := \frac{1}{N} \sum_{i=1}^N x_i. \end{array}$$

Universal Fast SVRG

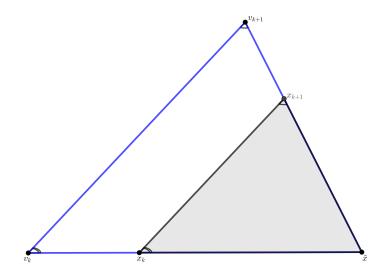
Algorithm 5 UniFastSvrg $_{\hat{g},\bar{g},\psi}(x_0,N;D)$

$$\begin{split} \tilde{x}_0 &= \text{argmin}_x \{ \langle \bar{g}(x_0), x \rangle + \psi(x) \}, \ v_0 = x_0, \ M_0 = 0, \ A_0 = \frac{1}{N}. \\ \text{for } t = 0, 1, \dots \text{do} \\ a_{t+1} &= \sqrt{A_t}, \ A_{t+1} = A_t + a_{t+1}. \\ &(\tilde{x}_{t+1}, v_{t+1}, M_{t+1}) \cong \text{UniTriSvrgEpoch}_{\hat{g}, \bar{g}, \psi}(\tilde{x}_t, v_t, M_t, A_t, a_{t+1}, N; D). \end{split}$$

Algorithm 6 UniTriSvrgEpoch_{\hat{g},\bar{g},ψ} ($\tilde{x},v_0,M_0,A,a,N;D$)

$$\begin{array}{l} A_{+} = A + a, \ x_{0} = \frac{A}{A_{+}} \tilde{x} + \frac{a}{A_{+}} v_{0}, \ \hat{G} = \mathsf{SvrgOrac}_{\hat{g}, \overline{g}}(\tilde{x}), \ G_{x_{0}} \cong \hat{G}(x_{0}). \\ \textbf{for} \ k = 0, \dots, N-1 \ \textbf{do} \\ v_{k+1} = \mathsf{Prox}_{\psi}(v_{k}, G_{x_{k}}, M_{k}/a). \\ x_{k+1} = \frac{A}{A_{+}} \tilde{x} + \frac{a}{A_{+}} v_{k+1}, \ G_{x_{k+1}} \cong \hat{G}(x_{k+1}). \\ M_{k+1} = \sqrt{M_{k}^{2} + \frac{a^{2}}{D^{2}}} \|G_{x_{k+1}} - G_{x_{k}}\|_{*}^{2}. \\ \textbf{return} \ (\bar{x}_{N}, v_{N}, M_{N}), \ \text{where} \ \bar{x}_{N} := \frac{1}{N} \sum_{k=1}^{N} x_{k}. \end{array}$$

Geometry of UniTriSvrgEpoch



Efficiency Guarantees

Method	Convergence rate	SO complexity
UniSgd	$rac{L_f D^2}{k} + \delta_f + \min \left\{ rac{\sigma D}{\sqrt{k}}, rac{\sigma_* D}{\sqrt{k}} + rac{L_{\hat{g}} D^2}{k} + \delta_{\hat{g}} ight\}$	k
${\sf UniFastSgd}$	$\frac{L_f D^2}{k^2} + k \delta_f + \min\left\{\frac{\sigma D}{\sqrt{k}}, \frac{\sigma_* D}{\sqrt{k}} + \frac{L_{\hat{g}} D^2}{k} + \delta_{\hat{g}}\right\}$	k
UniSvrg	$rac{(L_f+L_{\hat{g}})D^2}{2^t}+\delta_f+\delta_{\hat{g}}$	$2^t + n \log t$
UniFastSvrg	$rac{(L_f + L_{\hat{g}})D^2}{n(t - \log\log n)^2} + t(\delta_f + \delta_{\hat{g}})$	nt

Note: Assuming that querying \bar{g} is n times more expensive than \hat{g} .

Example: Problem with Hölder Smooth Components

Problem: $f(x) = \mathbb{E}_{\xi}[f_{\xi}(x)]$ with convex and $(\nu, H_{\xi}(\nu))$ -Hölder smooth f_{ξ} .

Standard mini-batch oracle: $g_b(x, \xi_{[b]}) = \frac{1}{b} \sum_{j=1}^b \nabla f_{\xi_j}(x)$.

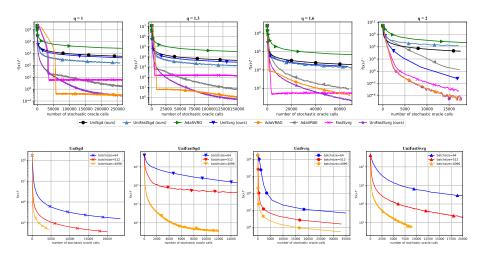
Method	Stochastic-Oracle (SO) Complexity	
UniSgd UniFastSgd	$ \begin{array}{l} \big(\frac{\textit{H}_{\textit{f}}(\nu) D^{1+\nu}}{\epsilon}\big)^{\frac{2}{1+\nu}} + \frac{1}{\textit{b}} \min \big\{\frac{\sigma^2 D^2}{\epsilon^2}, \big(\frac{\textit{H}_{\text{max}}(\nu)}{\epsilon}\big)^{\frac{2}{1+\nu}} D^2 + \frac{\sigma_*^2 D^2}{\epsilon^2} \big\} \\ \big(\frac{\textit{H}_{\textit{f}}(\nu) D^{1+\nu}}{\epsilon}\big)^{\frac{2}{1+3\nu}} + \frac{1}{\textit{b}} \min \big\{\frac{\sigma^2 D^2}{\epsilon^2}, \big(\frac{\textit{H}_{\text{max}}(\nu)}{\epsilon}\big)^{\frac{2}{1+\nu}} D^2 + \frac{\sigma_*^2 D^2}{\epsilon^2} \big\} \end{array} $	
UniSvrg $\left[N_{\nu}(\epsilon) \coloneqq \left(\frac{H_{f}(\nu)D^{1+\nu}}{\epsilon}\right)^{\frac{2}{1+\nu}} + \frac{1}{b}\left(\frac{H_{\max}(\nu)}{\epsilon}\right)^{\frac{2}{1+\nu}}D^{2}\right] + n_{b}\log_{+}N_{\nu}(\epsilon)$		
UniFastSvrg	$\left[\frac{n_b^{\nu} H_f(\nu) D^{1+\nu}}{\epsilon}\right]^{\frac{2}{1+3\nu}} + \left[\frac{n_b^{\nu} H_{\max}(\nu) D^{1+\nu}}{b^{(1+\nu)/2} \epsilon}\right]^{\frac{2}{1+3\nu}} + n_b \log \log n_b$	

Note: Assuming that querying \bar{g} is n_b times more expensive than \hat{g}_b .

Experiments & Conclusions

Experiments

Polyhderon feasibility problem: $\min_{\|x\| \le R} \{ f(x) := \frac{1}{n} \sum_{i=1}^{n} [\langle a_i, x \rangle - b_i]_+^q \}.$



Conclusions

- We showed that AdaGrad stepsizes can be applied, in a unified manner, in a large variety of situations, leading to universal methods suitable for multiple problem classes at the same time.
- The corresponding methods automatically adapt to the best possible problem class described by various smoothness and variance assumptions.
- The universality is not for free: we need to know a good estimate D for $||x_0 x^*||$. Adaptation to D is possible but at the expense of knowing smoothness parameters ("parameter-free" methods).

Paper

Universality of AdaGrad Stepsizes for Stochastic Optimization: Inexact Oracle, Acceleration and Variance Reduction (arXiv:2406.06398)

Thank you!

References I

- O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact oracle. **Mathematical Programming**, 146:37–75, 2013. DOI: 10.1007/s10107-013-0677-5.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.
- S. Ilandarideva, A. Juditsky, G. Lan, and T. Li. Accelerated stochastic approximation with state-dependent noise. arXiv preprint arXiv:2307.01497, 2023.
- A. Kavis, K. Y. Levy, F. Bach, and V. Cevher. UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization. In Advances in Neural Information Processing Systems 32, pages 6260–6269. 2019.

References II

- K. Y. Levy, A. Yurtsever, and V. Cevher. Online Adaptive Methods, Universality and Acceleration. Advances in Neural Information Processing Systems, 31, 2018.
- H. B. McMahan and M. Streeter. Adaptive Bound Optimization for Online Convex Optimization. arXiv preprint arXiv:1002.4908, 2010.
- Y. Nesterov. Universal gradient methods for convex optimization problems. Math. Program., 152:381–404, 2015.
- B. E. Woodworth and N. Srebro. An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning. Advances in Neural Information Processing Systems, 34:7333–7345, 2021.