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Motivation



Stochastic Convex Optimization

Problem:
f* = min f(x
x€Q ( )7
where f: R? — R is a convex function, Q C R? is a simple convex set.

Stochastic gradient oracle: Random vector g(x, &) € R? (€isar.v.),
Eelg(x,§)] = VF(x).

Main example: f(x) = E¢[fe(x)]. Then, g(x,§) = Vfe(x).
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Stochastic Gradient Method (SGD)

Problem: f* = min,¢q f(x).
Stochastic Gradient Method (SGD):

X1 = TQ(Xk — hkgk), 8k = B(xk),
where To(x) = argmin ¢ ql|x — y| is the Euclidean projection onto Q.

Main questions:
@ How to choose step sizes hy?

@ What is the rate of convergence?
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Convergence Guarantees for SGD

Assume that:
e Q is bounded: ||[x —y|| < D, ¥x,y € Q.

e Variance of g is bounded: E¢[|g(x, &) — VF(x)|?] < o2, Vx € Q.

Nonsmooth optimization: ||[Vf(x)|.« < Lo, Vx € Q.

hy = D —  E[f(z)] - f* < o(M
V(B +o2)(k+1) vk
where X, = k k 01 X;.

Smooth optimization: |Vf(x) — Vf(y)|. < Li|lx — y|, Vx,y € Q.

1 [,D2 oD
h —  E[f(x —f*§0< +7)_
= LRV (%) —+

).
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Discussion

@ What we saw previously is the standard approach in Optimization:

@ Fix a certain Problem class P.
@ Develop a “good” method tailored to P.

@ However:
» A specific problem may belong to multiple problem classes.
» Different problems may belong to different problem classes.

o ldeally, we would like to have universal algorithms suitable for
multiple problem classes at the same time.
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Universal Gradient Methods [Nesterov 2015]

Problem: min,cq f(x).

Hélder constants: H, .=  sup %, v € [0,1].
x,y€EQix#y d
Note:
o v =1 ||VFf(x) = VF(y)ll« < Hi|lx — y|l (Lipschitz gradient).

o v=0: ||[VFf(x) — VF(y)|l« < Ho (contains Lipschitz functions).
This class is better than ||V f(x)|« < Lo.

e If H,,H,, < 400 for some 11 < vy, then H, < 400,V € |11, 13].

Main assumption: There exists v € [0, 1] such that H, < +o0.
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Universal Gradient Methods — Il

Method: xjy1 = mQ(xk — MLka(xk)), where M is found by line search
to satisfy the following condition:

€

M
F(xiern) < FO) + (VF(0) X1 = 30 + 5 [xiers = i+ 5

2
Efficiency bound: O( inf <i> 1+" D2> iters to f(x;) — f* <e.

velo,1]\ €

Universal gradient methods for stochastic optimization? )

Universal Fast Gradient Method: O< inf (

HVD1+V ) 1+231/
vel0,1]

€
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Related Work: AdaGrad Methods

AdaGrad [McMahan and Streeter 2010; Duchi et al. 2011]: (gx = &(x«))
D

71( .
\ Ziongin

Convergence rate [Levy et al. 2018]: If Vf(x*) = 0, then
_ . (LoD L1D? oD
E[f(%)] — F* < it 7=

[f (%] _O<mm{ vk k }+\/E>7

(Lo, Ly are the Lipschitz constants of f, Vf; o is the variance.)

X1 = mQ(Xk — hkgk), hi =

UniXGrad [Kavis et al. 2019]: Accelerated gradient method with
AdaGrad step sizes based on difference of gradients. Convergence rate:

. (LoD LyD? oD
O(mln{\/ﬁ,/@}‘f‘ﬁ)

Our work: Fully-Universal AdaGrad methods. J
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Main Algorithms and Results for Uniformly
Bounded Variance



Approximate Smoothness

A function f: R_d — R is called approximately smooth if there exist
L, 6f > 0 and £: RY - R, g: RY — RY such that, for any x,y € RY,

0< [Br50y) = Fy) = F(x) — &0y = x)] < L lly = x| + 6

NB: (f,z) is a (0, L)-oracle introduced by [Devolder et al. 2013].
Examples:
o fis L-smooth <= (f,g) = (f,Vf)with Lr =L, 6 =0
o fis (v, H,)-Holder smooth = (f,g) = (f, V) with
Lf = [ﬁ]%Hﬁ and any 0 > 0.

o ¢(x) < f(x) < ¢(x) + 4, Vx, with L-smooth ¢ = (f,&) = (¢, Vo)
with L = L, 6f = 6.

o f(x) = max, W(x, u) with str. concave W, ii(x) ~%5 argmax, V(x, u)
= f(x) = V(x, u(x)), 8(x) = V,V(x, i(x)) with d¢ = 9.
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Problem Formulation
Problem: rcri1in w[F(x) = f(x) + ¢¥(x)], f and ® are convex, 1 is simple.
xedom
Assumptions:
© £ is (0f, Lf)-approximately smooth with components (f,g).

@ £ can be accessed only via a stochastic oracle g such that
Eelg(x,£)] = &(x).
© Uniformly bounded variance: Varg(x) = E¢[||lg(x, &) — g(x)[12] < 2.

© Bounded domain: |[x — y|| < D, ¥x,y € dom1.

Note: In general, & may be biased: E¢[g(x,&)] = g(x) # VF(x).

Note: Asm. 4 can always be ensured with D = 2Ry whenever we know
Ro > ||xo — x*|| by considering F* = minw [Fp(x) = f(x) + ¥p(x)],
omYyp

x€d

where ¥p = 1 + Indg, with By = {x : ||x — xo|| < Ro}.
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Basic Universal Gradient Method

Algorithm 1 UniSgd; ,,(x0; D)

80 = &(x0)-
for k=0,1...do
Xi41 = Proxy (xk, gk, M), g1 = &(Xk+1)-

Mii1 = \/I\/If + prllgkss — &ll?.

Prox-mapping: Prox,(x,g, M) = argmin{{g,y) +¥(y) + ¥ |y — x||?}.
K yEdom
Output point: x, = % > X
i=1

L¢D? oD
: E[F(%)] — F* < — .
Convergence rate: E[F(x)] < O< P + N + (5f>
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Accelerated Universal Gradient Method

Algorithm 2 UniFastSgd; ,,(x0; D)

Vo = X0, M():AOZO.

for k=0,1,... do
k1 = §(k +1), A1 = Ak + a4t
Yk = A+ 2 v, gy = (k).
Vk4+1 = PrOXQ/,(Vk 8y I\/Ik/ak+1).
Xk+1 = %Xk + A Vi1
8xi11 = g(xk—I—l)-

Micr = /M2 + %2 |lgs, . — g3, 12

L¢D? D
Convergence rate: E[F(xx)] — F* < O( 22 + (\7/; + k5f>
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Example: Holder Smooth Functions
Suppose f is (v, H,)-Holder smooth. Then, f as approximately smooth

- 2
with (F,) = (£, VF), arbitrary 6¢ > 0 and Ly ~ [L]55 H ™.
For UniSgd, we get, for Fy = E[F(Xk)] — F*,

2
LiD? oD HX"D? oD
st "‘7‘*‘51“\‘7_,,"- + Of.
k \/E ké;ﬁ»u \/E

Minimizing this expression in df, we get

2
HVDlJrI/ oD ) HVDlJrI/ T g2D?2
F. <O — | < 0 . calls.
kS ( kHTV +\/E) <€ In ([ . + 2 orac. calls

Similar reasoning for UniFastSgd gives, for Fix = E[F(xk)] — F¥,

H, D oD H, D55 2p2
FE<ol 177V <¢ in of |2 . calls.
kS ( k1+23V +\/E> <€ In ([ c ] + 2 )orac calls
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Implicit Variance Reduction



Problem Formulation

Problem: F* = XErg]oiIr;w[F(x) = f(x) + ¥(x)].

Assumptions:
@ £ is (0f, Lf)-approximately smooth with components (f,g).
@ Bounded domain: ||x — y|| < D, Vx,y € dom ).
© Stochastic oracle g: E¢[g(x,£)] = &(x).

Goal: Express complexity bounds in terms of o2 := Varz(x*) instead of 02.J
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Approximate Smoothness of Variance

New assumption on variance
Varg(x,y) = Ee[ll[g(x,€) — gy, &)] - [8(x) — &(¥)][I7] satisfies
Varg(x,y) < 2Lg[B 7 g(x, ) + g].

f.o [VF(x) = VA(y)IZ < 2L[f(y) — f(x) = (VF(x),y = x)].

Main example: f(x) = E¢[fe(x)], where each f¢ is convex and

(8¢, Le)-approx. smooth with components (, &). Then, g(x,&) = g¢(x)
satisfies the variance condition with f(x) = E¢[f:(x)], &(x) = E¢[ge(x)],
and Lg = Limax, 05 = E¢[d¢], where Lmax = supg Le.

Note: If g, is the mini-batch version of g of size b, then
Varg, (x,y) = %Varé(x,y), and hence Lg, = 3Lz, 63, = 6z.

Another example: o2-bounded variance — Lg— B > for any dz > 0. J
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Efficiency Bounds

NB: Consider the same methods as before (no modifications).

L+ L:)D?*  o.D
UniSgd: o(( f+kg) + +5f+5g).
@ When ¢ = 0z = 0, we recover the well-known rates for SGD with
predefined stepsizes based on the knowledge of all the constants.
) L¢D?  LzD?  o.D
UniFastSgd: O( ;2 gk + NG +k5f+5ér>.
o Different rates for L¢ and Lz terms are unavoidable [Woodworth and
Srebro 2021].
@ For the special case §f = 5§ = 0, similar results were obtained in

[Woodworth and Srebro 2021; llandarideva et al. 2023] assuming that all
constants are known.

Note: When g has o2-bounded variance, we get
202D? s } _ 2y/20D
kg Sl Wk
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Example: Problem with Holder Smooth Components

Problem: f(x) = E¢[f:(x)] with convex and (v, H¢(v))-Holder smooth f.

b
Standard mini-batch oracle: gy(x, &) = £ > Vi, (x).
j=1

Method Stochastic-Oracle (SO) Complexity

UniSgd (W) v 4 1 mln{U2D (Hmax(V))H%Dz 2D2}
UniFastSgd (M)l+3u +3 mm{aezm (Hmax( ))1+u D2 4 % D }

€

Notation: o2 =

sup Varg (x) = sup E[[|[V(x) — VF(x)|3],

xedom ¢ xedom ¢

02 = Varg (x*) = E¢[||Vf(x*) — VF(x*)||2], Hf(v) is the Holder constant
of degree v for f.
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Explicit Variance Reduction with SVRG



Universal SVRG

SVRG Oracle: G(x.&) = g(x,€) — g(%,€) + Z(%).

Algorithm 3 UniSvrg; ; . (x0; D)
)?0 = X0, MO =0.
fort=0,1,... do
Gy = SvrgOrac, z(%).
(Rex1, Xe41, Mey1) = Unngdéhw(xt, M., 2t1; D).

Algorithm 4 UniSgd, ,,(x0, Mo, N; D)

80 = &(x0)-
for k=0,...,N—1do
X1 = Proxy (xk, ks Mi), 8k+1 = 8(Xk+1)-

Myy1 = \//V’f + oz llgk+1 — gkli2

return (Xy, xn, My), where Xy = % ZINZI X;.
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Universal Fast SVRG

Algorithm 5 UniFastSvrg; z ,,(x0, N; D)

Xo = argminx{<g(X0)7X> + w(X)}v vo = X0, Mo =0, Ag = %
fort=0,1,... do

art1 = VA:, Aty1=Ar+arq1.
(Re+1, Ver1, Mey1) = UniTriSvrgEpochg 5 4, (%t, Ve, My, A, aey1, N; D).

Algorithm 6 UniTriSvrgEpoch, 5 (X, vo, Mo, A, a, N; D)

AL =A+a x= %)"( + -V G = SvrgOrac, z(X), Gx, = G(x0).
for k=0,...,N—1do

Vk4+1 = PI’OXw(Vk, ka, Mk/a). R

X1 = 2K+ Vi1, Gy = G(xks1).

2
Mii1 = /M + 221G,y — G2

return (Xy, vy, My), where Xy = % 221:1 X

Anton Rodomanov Universality of AdaGrad Stepsizes 19 /24



Geometry of UniTriSvrgEpoch

Anton Rodomanov Universality of AdaGrad Stepsizes



Efficiency Guarantees

SO complexity

Method Convergence rate
UmSgd UD U* + LgD
. L D a'D oxD
UniFastSgd =7 + kdr + m|n{f e 4 LeD”
UniSvrg % +0f + 5§
(Lf+Lg)D2

UniFastSvrg + t(0f + 0z)

n(t—log log n)?2

2t + nlogt

Note: Assuming that querying g is n times more expensive than g.
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Example: Problem with Holder Smooth Components

Problem: f(x) = E¢[f¢(x)] with convex and (v, H¢(v))-Holder smooth f;.

b
Standard mini-batch oracle: gu(x, &) = £ Y. Vi (x).
j=1

Method Stochastic-Oracle (SO) Complexity

UniSgd (BP0 o f min{ 2287, (Hha) £ p2 4. 222%)
UniFastSgd (7Hf(”)DHV)1+% +1 min{"iéﬁ, (H’“"EX(V)) v D2 4 D =}
UniSvrg  [Ny(e) = (w)m + %(HLX(V))H%Dﬂ + np IogJr N, (€)

€

[anf(V)D +v]7

”b Hmax

UniFastSvrg + [W] = + np log log ny,

Note: Assuming that querying g is n, times more expensive than gp.
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Experiments & Conclusions



Experiments

n
Polyhderon feasibility problem: ”n|1|i<nR{f(x) =15 [(a, x) — bi]4
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Conclusions

@ We showed that AdaGrad stepsizes can be applied, in a unified
manner, in a large variety of situations, leading to universal methods
suitable for multiple problem classes at the same time.

@ The corresponding methods automatically adapt to the best possible
problem class described by various smoothness and variance
assumptions.

@ The universality is not for free: we need to know a good estimate D
for || xo — x*||. Adaptation to D is possible but at the expense of
knowing smoothness parameters (“parameter-free” methods).

Paper

Universality of AdaGrad Stepsizes for Stochastic Opti- _E [=]
mization: Inexact Oracle, Acceleration and Variance Re-
duction (arXiv:2406.06398) Of

Thank you!
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