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Motivating Example

Spectral Linear Regression (SLR) problem

min
x∈Rd

∥A(x)− C∥,

where

A(x) :=
d∑

i=1

xiAi ,

and A1, . . . ,Ad ,C ∈ Rn×m (n ≤ m), ∥·∥ is the matrix spectral norm.
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Semidefinite Programming (SDP)

SLR can be reduced to an SDP problem:

min
x∈Rd ,t∈R

t

s.t.

(
tI A(x)− C

(A(x)− C )T tI

)
⪰ 0.

The SDP problem can be solved by Interior-Point methods.

But this is expensive. Each iteration requires O(n3) time.

Difficult to use sparsity of Ai , C .
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Our Approach

Problem: ϕ∗ := minx∈Rd

[
ϕ(x) := ∥A(x)− C∥

]
.

We propose randomized first-order methods that can solve this
problem with relative accuracy δ ∈ (0, 1):

(1− δ)E[ϕ(x̄k)] ≤ ϕ∗.

The main operation in our methods is the matrix-vector product:

A(x)v =
d∑

i=1

xi (Aiv).

Can be evaluated in O
(
nnz(A)

)
, where nnz(A) :=

∑d
i=1 nnz(Ai ).
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Problem Formulation

Problem

min
x∈Q

f (x),

where f : E → R is a convex function and Q ⊆ E is a simple convex set.

Main assumptions:

f has quadratic growth: there exists x0 ∈ Q and γ0 > 0 such that

f (x) ≥ γ0∥x − x0∥2B , ∀x ∈ Q,

where ∥h∥B := ⟨Bx , x⟩1/2.
We have a δ-relative stochastic subgradient oracle g(x , ξ):

f (y) ≥ (1− δ)f (x) + ⟨Eξ[g(x , ξ)], y − x⟩, ∀x , y ∈ Q.

The size of g(x , ξ) is uniformly relatively bounded:

Eξ[(∥g(x , ξ)∥∗B)2] ≤ 2Lf (x), ∀x ∈ Q.
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Example: Squared Spectral Norm

Squared spectral norm (n ≤ m)

F (X ) := ∥X∥2 = λmax(XX
T ), X ∈ Rn×m.

Quadratic growth: We have (w.r.t. Frobenius norm):

γ0 =
1

n
, X0 = 0.

Subgradient:

F ′(X ) = 2vvTX , v := MaxEigVec(XXT ),

where v ∈ Rn is a unit leading eigenvector of XXT :

(XXT )v = λmax(XX
T )v , ∥v∥ = 1.

Relative boundedness: This subgradient is bounded w.r.t. F :

∥F ′(X )∥2F ≡ 4F (X ) =⇒ L = 2.
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Relative Boundedness

For any function f : E → R, define

F (x) :=
1

2
f 2(x).

Then, for any x ∈ E, we have

∥∇f (x)∥ ≤ M ⇐⇒ ∥∇F (x)∥2 ≤ 2M2F (x).

Indeed, ∇F (x) = f (x)∇f (x). Hence,

∥∇F (x)∥2 = f 2(x)∥∇f (x)∥2 = 2∥∇f (x)∥2F (x).

Thus:

M-boundedness of f ⇐⇒ M2-relative boundedness of 1
2 f

2.
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Composition with Affine Mapping
Consider

f (x) = F (Ax + b),

where A : E → E1, b ∈ E1, and F satisfies our assumptions:

F has quadratic growth w.r.t. ∥·∥B1 with parameters γ0 and y0.

We have δ-relative stochastic oracle G (y , ξ) for F .

Oracle G (y , ξ) is uniformly relatively bounded with constant L.

Define the seminorm induced by B = A∗B1A:

∥x∥B = ∥Ax∥B1 , ∀x ∈ E

and stochastic oracle

g(x , ξ) := A∗G (Ax + b, ξ).

Then, all properties are satisfied with the same constants γ0, L, and

x0 = argmin
x∈Q

∥Ax + b − y0∥B .
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Relative Stochastic Oracle for Spectral Norm
Computing MaxEigVec(XXT ) exactly is very expensive.
Instead, we would like to approximate it by a random vector:

MaxEigVec(XXT ) ≈ MaxEigVecδ(XX
T , ξ).

Need the following subroutine:

δ-relatively inexact stochastic eigenvector (δ ∈ (0, 1))

Given a matrix A ∈ Sn+, compute v̂ := MaxEigVecδ(A, ξ) such that

Eξ⟨Av̂ , v̂⟩ ≥ (1− δ)λmax(A), ∥v̂∥ = 1.

Then, we have a δ-relative inexact stochastic oracle:

G (X , ξ) := 2v̂ v̂TX , v̂ := MaxEigVecδ(XX
T , ξ).

It is still relatively bounded:

∥G (x , ξ)∥2F = 4⟨XXT v̂ , v̂⟩ ≤ 4λmax(XX
T ) = 2F (X ).
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Power Method

Let A ∈ Sn+. For an integer degree p ≥ 1, define

v̂p(A, ξ) :=
Apξ

∥Apξ∥
, ξ ∼ Unif(Sn−1).

Should be computed in a numerically stable way:

Power Method

v̂k+1 :=
Av̂k

∥Av̂k∥
, k = 0, . . . , p − 1, v̂0 := ξ.

Complexity: p matrix-vector products.

Main result (Kuczyński and Woźniakowski, 1992)

δ ≤ ln n

p
.
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Lanczos Method

v̂p ∈ Argmax
x∈Kp∩Sn−1

⟨Ax , x⟩, Kp := span(ξ,Aξ,A2ξ, . . . ,Apξ).

Accuracy estimate (Kuczyński and Woźniakowski, 1992)

For ξ ∼ Unif(Sn−1), we have

δ ≤ 3
( ln n

p

)2
.

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023 12 / 28



Implementing Lanczos Method

Lanczos tridiagonalization

Set q0 = 0, r0 = ξ. Iterate for 0 ≤ k ≤ p − 1:

qk+1 =
rk

∥rk∥
, rk+1 = Aqk+1 − ⟨Aqk+1, qk+1⟩qk+1 − ∥rk∥qk .

Result:
AQk = QkTk + rke

T
k ,

where Qk = [q1, . . . , qk ] has orthonormal columns spanning Kk , ek ∈ Rn is
the kth coordinate vector, where Tk ∈ Rk×k is a tridiagonal matrix:

Tk = TriDiag(α1, . . . , αk ;β1, . . . , βk),

where αk := ⟨Aqk , qk⟩ and βk = ∥rk∥.
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Stochastic Gradient Method

Stochastic Gradient method

xk+1 = GradStepQ,B(xk , akgk), gk := g(xk , ξk), k ≥ 0,

where ak ≥ 0 are certainly chosen step sizes.

Gradient step: For any x ∈ E and g ∈ (kerB)⊥, denote

GradStepQ,B(x , g) := argmin
y∈Q

{
⟨g , y⟩+ 1

2
∥y − x∥2B

}
.

(Also referred to as the “prox-mapping” by some authors.)

When B ≻ 0, this is the projected gradient step (w.r.t. B-norm):

GradStepQ,B(x , g) = ProjQ,B(x − B−1g),

where ProjQ,B(x) := argminy∈Q∥y − x∥B .
If Q = E, point T := GradStepQ,B(x , g) is a solution of linear system

B(T − x) = −g .
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Convergence Guarantee

Suppose ai are deterministic step sizes and ai <
1−δ
L .

Output point: For ci := ai (1− δ − Lai ), define and

x̄k :=
1

Ck

k−1∑
i=0

cixi , Ck :=
k−1∑
i=0

ci .

Theorem. For any k ≥ 0, we have

(1−∆k)E[f (x̄k)] ≤ f ∗,

where

∆k := δ +
1− δ + 2γ0L

∑k−1
i=0 a2i

1 + 2γ0
∑k−1

i=0 ai
.
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Choice of Stepsizes I

∆k := δ +
1− δ + 2γ0L

∑k−1
i=0 a2i

1 + 2γ0
∑k−1

i=0 ai
(≥ 0).

General recipe

To make ∆k → δ, it suffices to ensure that

∞∑
k=0

ak = ∞,

∞∑
k=0

a2k < ∞.
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Choice of Stepsizes II

∆k := δ +
1− δ + 2γ0L

∑k−1
i=0 a2i

1 + 2γ0
∑k−1

i=0 ai
(≥ 0).

Optimal step sizes for a fixed horizon N ≥ 1

ak = a∗N :=
1− δ√

2γ0NL(1− δ) + L2 + L
, k ≥ 0.

Under this choice, we have

∆N ≤ δ +

√
2L

γ0N
.

In particular,

N ≥ N(δ) :=
2L

γ0δ2
=⇒ ∆N ≤ 2δ.

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023 17 / 28



Choice of Stepsizes III

Constant step size based on target accuracy δ ∈ (0, 1):

ak =
δ

2L
=⇒ ∆N ≤ 2δ, ∀N ≥ N(δ).
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MaxCut Problem

Let G = (V ,E ) be an undirected weighted graph with V = {1, . . . , n} and
weights w({i , j}) > 0 for each edge {i , j} ∈ E .

Cut: For each vertex i = 1, . . . , n, assign xi = ±1.

Value of cut

c(x) =
1

2

∑
{i ,j}∈E

w({i , j})(1− xixj).

MaxCut problem

c∗ := max
x∈Bn

c(x),

where
Bn := {x ∈ Rn : x2i = 1, i = 1, . . . , n}.

Note: NP-complete! But can be efficiently approximated.
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MaxCut via Laplacian Matrix

Note that

c(x) =
1

2

∑
{i ,j}∈E

w({i , j})(1− xixj) =
1

4
⟨Ax , x⟩,

where A ∈ Sn+ is the Laplacian matrix of G :

Ai ,j :=


∑

k : {i ,k}∈E w({i , k}), if i = j ,

−w({i , j}), if {i , j} ∈ E ,

0, otherwise.

MaxCut problem

4c∗ = max
x∈Bn

⟨Ax , x⟩.
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SDP Relaxation

MaxCut problem:
s∗ := max

x∈Bn
⟨Ax , x⟩.

SDP relaxation:

f ∗ := min
z∈Rn

{ n∑
i=1

zi : A ⪯ D(z)
}

︸ ︷︷ ︸
Dual SDP relaxation

= max
Y∈Sn

{
⟨A,Y ⟩ : Y ⪰ 0, d(Y ) = e

}
︸ ︷︷ ︸

Primal SDP relaxation

,

where e := (1, . . . , 1)T ∈ Rn.

Accuracy of relaxation (Goemans and Williamson, 1995)

0.878 · f ∗ ≤ s∗ ≤ f ∗.

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023 21 / 28



Finding the Cut

Random hyperplane algorithm (Goemans and Williamson, 1995)

1 Solve Primal SDP relaxation, obtain optimal Y ∗.

2 Compute decomposition Y ∗ = RTR, where R ∈ Rm×n.

3 Sample u ∼ Unif(Sm−1).

4 Compute x∗ = sign(RTu).

Quality of the cut

Eu[c(x
∗)] ≥ 0.878 · c∗.
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Transforming Dual Problem

We can assume that D(A) := Diag(A1,1, . . . ,An,n) ≻ 0. Then,

f ∗ = min
z∈Rn

{ n∑
i=1

zi : A ⪯ D(z)
}

= min
z∈Rn

++

{ n∑
i=1

zi : λmax

(
[D(z)]−1/2A[D(z)]−1/2

)
≤ 1

}
.

Make change of variables xi = z
−1/2
i . Then:

f ∗ = min
x∈Rn

++

{ n∑
i=1

1

x2i︸ ︷︷ ︸
=:ϕ(x)

: λmax

(
D(x)AD(x)

)
≤ 1︸ ︷︷ ︸

=:f (x)

}

= min
x∈Rn

++

[ϕ(x)f (x)] = min
x∈Rn

++

{f (x) : ϕ(x) ≤ 1}.
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Solving Transformed Dual

Problem

f ∗ = min
x∈Q

f (x), f (x) := λmax

(
S(x)

)
,

where

S(x) := D(x)AD(x), Q :=
{
x ∈ Rn

++ :
n∑

i=1

1

x2i
≤ 1

}
.

Note: f (x) = ∥P(x)∥2, where P(x) := D(x)A1/2.

Oracle: g(x , ξ) := 2d(AD(x)v̂ v̂T ), v̂ := MaxEigVecδ
(
S(x), ξ

)
.

Choice of norm: B = D(A).

Then, f and g(x , ξ) satisfy our assumptions with

γ0 =
1

n
, x0 = argmin

x∈Q
∥x∥B = ProjQ,B(0), L = 2.

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023 24 / 28



Final Guarantee I

We can get a point x̄k ∈ Q such that

(1− δ)E[f (x̄k)] ≤ f ∗,

where
f (x) := λmax

(
S(x)

)
in the following number of iterations:

N(δ) = O
( L

γ0δ2

)
= O

( n

δ2

)
.

Note: We cannot compute f (x̄k) exactly (too expensive).
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Final Guarantee II

Nevertheless, we can efficiently compute

f̂k := (1− δ)−1⟨S(x̄k)v̂ , v̂⟩, v̂ := MaxEigVecδ
(
S(x̄k), ξ

)
such that

E[f (x̄k)] ≤ E[f̂k ] ≤ (1− δ)−2f ∗.

Then:
f ∗ ≤ E[f̂k ] ≤ (1− δ)−2f ∗.

Combining this with
0.878 · f ∗ ≤ s∗ ≤ f ∗,

we get for the MaxCut problem:

αE[f̂k ] ≤ s∗ ≤ E[f̂k ],

where α := 0.878(1− δ)2.
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Final Guarantee III

Result

We can produce f̂k such that

αE[f̂k ] ≤ s∗ ≤ E[f̂k ].

where α := 0.878(1− δ)2.

Total arithmetical complexity:

N(δ)× O
( ln n√

δ

)
︸ ︷︷ ︸
Number of

mat-vec products

× O(|E |)︸ ︷︷ ︸
Cost of

mat-vec product

= O
(n|E | ln n

δ5/2

)
.

Note: We do not need a very small δ:

δ = 0.05 =⇒ α ≈ 0.79,

δ = 0.01 =⇒ α ≈ 0.86.
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Open Question

Open question: How to generate the cut corresponding to f̂k?

Main problem: We need an approximate optimal solution Yk for the
primal SDP relaxation and its factorization

Yk = RT
k Rk .

Thank you!
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