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Motivating Example

Spectral Linear Regression (SLR) problem
in [|[A(x) — C
Xrglgldll (x) = Cl|,
where

d
A(X) = Z X,'A,',
i=1

and Ai,...,Aq,C € R™™ (n < m), ||-|| is the matrix spectral norm.
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Semidefinite Programming (SDP)

@ SLR can be reduced to an SDP problem:

min t
x€RY teR

tl Ax)-C
N (o™ o ") =0

@ The SDP problem can be solved by Interior-Point methods.
e But this is expensive. Each iteration requires O(n?) time.

o Difficult to use sparsity of A;, C.
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Our Approach

Problem: ¢* := min cpa[d(x) = ||A(x) — C||].

@ We propose randomized first-order methods that can solve this
problem with relative accuracy 6 € (0,1):

(1= 0) E[p(x)] < o7

@ The main operation in our methods is the matrix-vector product:
d
A(x)v = ZX,’(A,'V).
i=1

Can be evaluated in O(nnz(A)), where nnz(A) := 2?21 nnz(A;).
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Problem Formulation

Problem

in f
g 6,

where f: E — R is a convex function and @ C E is a simple convex set.

Main assumptions:
e f has quadratic growth: there exists xp € @ and ~g > 0 such that
f(x) > vllx — x0l3, Vx € Q,
where ||h||5 := (Bx, x)'/2.
@ We have a J-relative stochastic subgradient oracle g(x, &):
Fy) = (1= 9)f(x) + (Eelg(x, &),y —x),  Yx,yeQ.
@ The size of g(x,&) is uniformly relatively bounded:

Ec[(le(x Ol5)%] <2Lf(x),  ¥xeQ.
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Example: Squared Spectral Norm

Squared spectral norm (n < m)

F(X) = Hx”z = )‘max(XXT), X € R™*M.

Quadratic growth: We have (w.r.t. Frobenius norm):
1
Yo = ;7 XO =0.
Subgradient:
F'(X)=2w'X, v := MaxEigVec(XX "),
where v € R" is a unit leading eigenvector of XX T:

(XX T = Amax(XX T)v, v] = 1.

Relative boundedness: This subgradient is bounded w.r.t. F:
IF'(X)|} =4F(X) = L=2.
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Relative Boundedness

For any function 7: E — R, define
1.,
F(x) = =f%(x).
2
Then, for any x € E, we have
IVF(x)| <M < ||[VF(x)|]? <2M?F(x).
Indeed, VF(x) = f(x)Vf(x). Hence,
IVF()II? = FP)IVE)? = 2 V()| F ().
Thus:

M-boundedness of f <= M?Z3-relative boundedness of %fz.
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Composition with Affine Mapping

Consider
f(x) = F(Ax + b),
where A: E — E;, b € Eq, and F satisfies our assumptions:

e F has quadratic growth w.r.t. ||-||g, with parameters vy and yp.
@ We have J-relative stochastic oracle G(y, &) for F.
e Oracle G(y, &) is uniformly relatively bounded with constant L.

Define the seminorm induced by B = A*B; A:
x|z = ||Ax||g,, Vx €E

and stochastic oracle
g(x.&) = A"G(Ax + b,€).
Then, all properties are satisfied with the same constants v, L, and

xo = argmin||Ax + b — yo||B.
x€Q
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Relative Stochastic Oracle for Spectral Norm
Computing MaxEigVec(XX ) exactly is very expensive.
Instead, we would like to approximate it by a random vector:

MaxEigVec(XX ") ~ MaxEigVecs(XX T, €).
Need the following subroutine:

d-relatively inexact stochastic eigenvector (d € (0,1))
Given a matrix A € S”, compute ¥ := MaxEigVec;(A, £) such that

E§<A\7, V) > (1 —6)Amax(A), ]l = 1.

Then, we have a J-relative inexact stochastic oracle:

G(X,&) =200T X, ¥ = MaxEigVecs(XX T, ¢).
It is still relatively bounded:

1G(x, &)|[F = 4(XXT0,0) < BAmax(XXT) = 2F(X).
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Power Method
Let A€ S". For an integer degree p > 1, define

ey A Certen
Up(A€) = AP’ & ~ Unif(S"77).

Should be computed in a numerically stable way:

Power Method

AV
v =——— k=0,...,p—-1 Vo == &.
Vk+1 HA\,)k”, ) P ) Vo 6

Complexity: p matrix-vector products.

Main result (Kuczyiski and Wozniakowski, 1992)

Inn
o< —.

p
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Lanczos Method

Vp € Argmax (Ax,x), Kp = span(¢, A¢, A%,
xeL,NS"—1

Accuracy estimate (Kuczyriski and Wozniakowski, 1992)
For £ ~ Unif(S"1), we have

L. APE).
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Implementing Lanczos Method

Lanczos tridiagonalization
Set gqp =0, p =¢&. lteratefor 0 < k < p—1:

rk
Qi1 = Tl rk+1 = AGk+1 — (AQk+1, Gk+1) Gk+1 — || 7kl gk

Result:
AQr = Qi Tk + riel

where Qx = [q1, - . ., gk] has orthonormal columns spanning Ky, ex € R" is
the kth coordinate vector, where T) € R¥*K is a tridiagonal matrix:

Tx = TriDiag(a1, ..., ak; B1,-- -, Bk)s

where ay = (Aqk, qk) and Bx = || rk]|-
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Stochastic Gradient Method
Stochastic Gradient method

xk+1 = GradStepg g(xk, ak8&k), 8k = 8(Xk&k), k>0,

where a; > 0 are certainly chosen step sizes.

Gradient step: For any x € E and g € (ker B)*, denote
, 1
GradStepq 5(x. g) = argmin{ (g.y) + 5 Iy — xI[3 }.
YeEQ

(Also referred to as the “prox-mapping” by some authors.)
@ When B > 0, this is the projected gradient step (w.r.t. B-norm):
GradStepQ,B(x,g) = Pron,B(x — B_lg),

where Projg g(x) = argmin colly — x||5-

o If Q =K, point T = GradStepg g(x, g) is a solution of linear system

B(T —x) =—g.
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Convergence Guarantee

Suppose a; are deterministic step sizes and a; < 1%5.

Output point: For ¢; .= a;(1 — 6 — La;), define and

k—1 k—1
v . 1 .
Kk = — E CiXi, Ck = E Ci.
Cy “ .
i=0 =0

Theorem. For any k > 0, we have

(1 — Ap) E[f(x«)] < 7,

where 1
A 4 1—0+ 2")/0L Z 2
k — .
1+ 290 Y2155 ai )
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Choice of Stepsizes |

1— 6+ 2yl Y ) a?
A= 10T 702 (> 0).

1+2v E: o ai

General recipe
To make Ay — 4, it suffices to ensure that

o0 o0
M=o, dd<e
k=0

k=0
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Choice of Stepsizes Il

1— 8+ 2yl Yk ) a?
Ay = o4 L2020l 2 (>0).
1+2’)’02i:0 ai

Optimal step sizes for a fixed horizon N > 1
a=ay = 19
TN 2N —0) + L2+ L

Under this choice, we have

2L
Ay <o+
v YN’
In particular,
N>NE) = 25— Ay <25
- 7002 N=
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Choice of Stepsizes IlI

Constant step size based on target accuracy 4 € (0,1):

g = ;I_ — AN < 25, VN > N((S)
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MaxCut Problem

Let G = (V, E) be an undirected weighted graph with V = {1,
weights w({/,j}) > 0 for each edge {i,j} € E.

Cut: For each vertex i =1,...,n, assign x; = +1.
Value of cut

c()=5 O wl{i./N ).

{ijeE

...,n} and

MaxCut problem
c* = max c(x),

where
B"={xeR":x*=1, i=1,...,n}.

Note: NP-complete! But can be efficiently approximated.
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MaxCut via Laplacian Matrix

Note that
() =3 3 Wl xig) = 5 (A%,

{ijeE
where A € S’ is the Laplacian matrix of G:
ok fixee Wi k}), ifi=,
Ai,j = _W({ivj})’ if {i7j} € E,
0, otherwise.
MaxCut problem

4c* = max(Ax, x).
xeB"
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SDP Relaxation

MaxCut problem:

s* = max(Ax, x).
xeBn

SDP relaxation:

= mm{Zz, A=< D( )}_max{AY Y =0, d(Y)=

z€RN YE n

e},

~
Primal SDP relaxation

Dual SDP relaxation

where e == (1,...,1)T € R".

Accuracy of relaxation (Goemans and Williamson, 1995)

0.878 - f* < s* < f*.
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Finding the Cut

Random hyperplane algorithm (Goemans and Williamson, 1995)
@ Solve Primal SDP relaxation, obtain optimal Y*.
@ Compute decomposition Y* = RTR, where R € R™*".
© Sample u ~ Unif(S™1).
@ Compute x* = sign(R" u).

Quality of the cut

E,[c(x*)] > 0.878 - c*.
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Transforming Dual Problem
We can assume that D(A) := Diag(A1,1,...,Ann) = 0. Then,

= pin{3e 42 002)

— min {Zz,. o ([D(2)] " V2A[D(2)] 22) < 1}.

zeRT

Make change of variables x; = zi_l/2. Then:

f* = min {Zn: iz : Amax (D(x)AD(x)) < 1}

x€RT , et X;
~—— =:f(x)
=9(x)
= min = min {f <1}
min [60F0) = min {£() 6 < 1)
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Solving Transformed Dual

Problem
= )r(rélg f(x), f(x) = /\maX(S(x)),

where
n

S(x) = D(x)AD(x), Q= {x err Y % < 1}.

i=1 i

Note: f(x) = ||P(x)||?, where P(x) := D(x)A/2.
Oracle: g(x,¢) = 2d(AD(x)00T), ¥ := MaxEigVecs(S5(x),§).
Choice of norm: B = D(A).

Then, f and g(x, &) satisfy our assumptions with
1

Y = -, xp = argmin||x||g = Projg 5(0), L=2.
n x€Q
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Final Guarantee |

We can get a point xx € Q such that
(1 - 9)E[f(%)] < £,

where
f(x) = Amax(S(x))

in the following number of iterations:

- o(,L) - o(3)

Note: We cannot compute f(xx) exactly (too expensive).
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Final Guarantee Il
Nevertheless, we can efficiently compute
fo = (1—0)"1(S(%)0,0), ¥ = MaxEigVecs(S(x),¢)

such that
E[f(x¢)] < E[f] < (1 — 8)72F".

Then:
f* <E[f] < (1—6)72F"

Combining this with
0.878 - f* < s* < ¥,

we get for the MaxCut problem:
aIE[fk] <5< E[fk],

where o == 0.878(1 — 4).
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Final Guarantee |l
Result

We can produce f such that
aE[f] < s* < E[4].

where o == 0.878(1 — 6)>.

Total arithmetical complexity:

Inn n|E|Inn
N(6) x o(—) < O(E)) = O(L).
\/3 ~—— 552
Cost of
Number of mat-vec product
mat-vec products
Note: We do not need a very small 4:
§=005 = a=~0.79,
0=001 = «a=0.86.
Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023

27/28




Open Question

Open question: How to generate the cut corresponding to fi?

Main problem: We need an approximate optimal solution Y/ for the
primal SDP relaxation and its factorization

Y« = R! Ry.

Thank you!

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023 28/28



References

@ M. X. Goemans and D. P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42(6):1115-1145, Nov. 1995. 1ssN: 0004-5411. DOT:
10.1145/227683.227684.

@ J. Kuczynski and H. Wozniakowski. Estimating the Largest Eigenvalue by
the Power and Lanczos Algorithms with a Random Start. SIAM Journal on
Matrix Analysis and Applications, 13(4):1094-1122, Oct. 1992. DOT:
10.1137/0613066.

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale March 16, 2023 28/28


https://doi.org/10.1145/227683.227684
https://doi.org/10.1137/0613066

	Overview
	Problem Formulation
	Oracle for Maximal Eigenvector
	Stochastic Gradient Method
	Application: MaxCut Problem

