Gradient Methods for Stochastic Optimization in Relative Scale

Anton Rodomanov

(Joint work with Y. Nesterov)

UCLouvain, Belgium

May 31, 2023

SIAM Conference on Optimization (OP23), Seattle

- Introduction
- 2 Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- 5 Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

- Introduction
- Problem Formulation
- Gradient Method
- 4 Oracle for Maximal Eigenvector
- Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

Optimization in Relative Scale

Problem

$$f^* := \min_{x \in Q} f(x),$$

where $f: \mathbb{E} \to \mathbb{R}$ is a strictly positive convex function and $Q \subseteq \mathbb{E}$ is a simple convex set.

Goal: Find approximate solution $\bar{x} \in Q$ with relative accuracy $\delta \in (0,1)$:

$$f(\bar{x}) \leq (1+\delta)f^*$$
.

Main feature: Complexity of methods does not depend on f^* (or data defining the problem).

Relative Accuracy vs Absolute Accuracy

Note:

• δ -relatively inexact solution \iff ϵ -absolutely inexact solution:

$$f(\bar{x}) \leq (1+\delta)f^* \iff f(\bar{x}) - f^* \leq \epsilon, \qquad \epsilon := \delta f^*.$$

 However, usually we cannot achieve what we want "for free" by simply reusing existing methods and complexity results.

Example (Gradient Method). To achieve δ -relative accuracy, it needs

$$N = \frac{LR_0^2}{\epsilon} = \frac{LR_0^2}{\delta f^*}$$

iterations, where L is the Lipschitz constant of ∇f and $R_0 := ||x_0 - x^*||$. Depending on f^* , N could be very large, even if δ is moderate!

We need special methods.

Context and Contributions

- There already exist several gradient-type methods for optimization in relative scale: (Nesterov, 2008; Nesterov, 2009; Nesterov, 2010).
- However, they all work with an exact oracle (exact computations of objective function and/or its gradient).

This work

New first-order methods with inexact stochastic oracle.

Motivating Example

Spectral Linear Regression (SLR) problem

$$\min_{x \in \mathbb{R}^d} ||A(x) - C||, \qquad A(x) := \sum_{i=1}^d x_i A_i,$$

where $A_1, \ldots, A_d, C \in \mathbb{R}^{n \times m}$ $(n \leq m)$, $\|\cdot\|$ is the matrix spectral norm.

- Computing subgradient requires computing a pair of leading singular vectors of an n x m matrix.
- Cost of exact computation: $O(n^3) \implies$ infeasible for large n (and difficult to exploit sparsity).
- But approximate singular vectors are much more affordable: they require only a small number of matrix-vector products.
- The corresponding linear algebra methods are typically randomized, so we obtain inexact approximate subgradients.

- Introduction
- Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- **5** Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

Problem Formulation

Problem

$$\min_{x\in Q}f(x),$$

where $f: \mathbb{E} \to \mathbb{R}$ is a convex function and $Q \subseteq \mathbb{E}$ is a simple convex set.

Main assumptions:

• f has quadratic growth: there exists $x_0 \in Q$ and $\gamma_0 > 0$ such that

$$f(x) \ge \gamma_0 \|x - x_0\|_B^2, \qquad \forall x \in Q,$$

where $||h||_B := \langle Bh, h \rangle^{1/2}$.

• We have a δ -relatively inexact stochastic subgradient oracle \hat{g} :

$$f(y) \ge (1 - \delta)f(x) + \langle \mathbb{E}_{\xi}[\hat{g}(x, \xi)], y - x \rangle, \qquad \forall x, y \in Q.$$

• The size of \hat{g} is relatively bounded:

$$\mathbb{E}_{\xi}[(\|\hat{g}(x,\xi)\|_B^*)^2] \le 2Lf(x), \qquad \forall x \in Q.$$

Example: Squared Spectral Norm

$$F(X) := ||X||^2 = \lambda_{\mathsf{max}}(XX^T), \qquad X \in \mathbb{R}^{n \times m}, \qquad n \le m.$$

Quadratic growth: We have (w.r.t. Frobenius norm):

$$\gamma_0 = \frac{1}{n}, \qquad X_0 = 0.$$

Relatively inexact stochastic subgradient:

$$\hat{G}(X) := 2\hat{u}\hat{u}^T X, \qquad \hat{u} \sim \mathsf{MaxEV}(XX^T, \delta).$$

δ -relatively inexact stochastic eigenvector

Given a matrix $A \in \mathbb{S}^n_+$, compute $\hat{u} \sim \mathsf{MaxEV}(A, \delta)$ such that

$$\mathbb{E}\langle A\hat{u},\hat{u}
angle \geq (1-\delta)\lambda_{\sf max}(A), \qquad \|\hat{u}\| = 1.$$

Relative boundedness: \hat{G} is relatively bounded w.r.t. F with L=2:

$$\|\hat{G}(X)\|_F^2 = 4\langle XX^T\hat{u}, \hat{u}\rangle \le 4\lambda_{\max}(XX^T) = 4F(X).$$

Composition with Affine Mapping

Consider

$$f(x) = F(Ax + b), \qquad x \in \mathbb{E},$$

where $A \colon \mathbb{E} \to \mathbb{E}_1$, $b \in \mathbb{E}_1$, and F satisfies our assumptions:

- F has quadratic growth w.r.t. $\|\cdot\|_{B_1}$ with parameters γ_0 and y_0 .
- We have δ -relative stochastic oracle \hat{G} for F.
- ullet Oracle \hat{G} is uniformly relatively bounded with constant L.

Define the seminorm induced by $B = A^*B_1A$:

$$||x||_B = ||Ax||_{B_1}, \quad \forall x \in \mathbb{E}$$

and stochastic oracle

$$\hat{g}(x) := A^* \hat{G}(Ax + b), \qquad x \in \mathbb{E}.$$

Then, all properties are satisfied with the same constants γ_0 , L, and

$$x_0 = \underset{x \in Q}{\operatorname{argmin}} \|Ax + b - y_0\|_{B_1}.$$

- Introduction
- Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- **5** Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

Gradient Method with Relative Inexact Stochastic Oracle

$$\hat{g}_k \sim \hat{g}(x_k), \quad x_{k+1} = \operatorname{Prox}_{Q,B}(x_k, a_k \hat{g}_k), \qquad k \geq 0,$$

where $\operatorname{Prox}_{Q,B}(x,s) := \operatorname{argmin}_{y \in Q} \{\langle s,y \rangle + \frac{1}{2} \|y - x\|_B^2\}$, and $(a_k)_{k=0}^{\infty}$ are deterministic step sizes.

Output point: Suppose $a_k < \frac{1-\delta}{L}$ for all $k \ge 0$. Define

$$\bar{x}_k \coloneqq \frac{1}{C_k} \sum_{i=0}^{k-1} c_i x_i, \qquad C_k \coloneqq \sum_{i=0}^{k-1} c_i, \qquad c_i \coloneqq a_i (1 - \delta - La_i).$$

Theorem. For any $k \ge 0$, we have

$$(1-\Delta_k)\mathbb{E}\,f(\bar{x}_k)\leq f^*,\qquad \Delta_k\coloneqq \delta+\frac{1-\delta+2\gamma_0L\sum_{i=0}^{k-1}a_i^2}{1+2\gamma_0\sum_{i=0}^{k-1}a_i}.$$

Choice of Stepsizes

Optimal step sizes for a fixed horizon $N \ge 1$

$$a_k \equiv rac{1-\delta}{\sqrt{2\gamma_0 N L(1-\delta) + L^2 + L}}, \qquad k \geq 0.$$

Convergence rate:

$$\Delta_{N} \leq \delta + \sqrt{\frac{2L}{\gamma_{0}N}} \quad \Longrightarrow \quad \Delta_{N} \leq 2\delta, \quad \forall N \geq N(\delta) := \frac{2L}{\gamma_{0}\delta^{2}}$$

Note: For SLR, we have L=2 and $\gamma_0=\frac{1}{n}$, so $N(\delta)=\frac{4n}{\delta^2}$ does not depend on data defining the problem.

Constant step size based on target accuracy $\delta \in \left(0,\frac{2}{3}\right)$

$$a_k \equiv \frac{\delta}{2I}, \qquad k \geq 0.$$

 \implies same rate for Δ_N .

- Introduction
- Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- **5** Dual Averaging Method
- Mumerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

Stochastic Oracle for Maximal Eigenvector

δ -relatively inexact stochastic eigenvector $(\delta \in (0,1))$

Given a matrix $A \in \mathbb{S}^n_+$, compute $\hat{u} \sim \mathsf{MaxEV}(A, \delta)$ such that

$$\mathbb{E}\langle A\hat{u}, \hat{u} \rangle \geq (1 - \delta)\lambda_{\mathsf{max}}(A), \qquad \|\hat{u}\| = 1.$$

How to compute $MaxEV(A, \delta)$ efficiently?

Power Method

Let $A \in \mathbb{S}^n_+$. For an integer degree $p \geq 1$, define

$$\hat{u}_p := rac{A^p \xi}{\|A^p \xi\|}, \qquad \xi \sim \mathsf{Unif}(\mathcal{S}^{n-1}).$$

Should be computed in a numerically stable way:

Power Method

$$\hat{u}_0 \coloneqq \xi, \qquad \hat{u}_{k+1} \coloneqq \frac{A\hat{u}_k}{\|A\hat{u}_k\|}, \quad k = 0, \dots, p-1.$$

Complexity: *p* matrix-vector products.

Main result (Kuczyński and Woźniakowski, 1992)

Suppose $n \ge 8$ and $p \ge 2$. Then,

$$\mathbb{E}\langle A\hat{u}_{p},\hat{u}_{p}\rangle \geq (1-\delta_{p})\lambda_{\mathsf{max}}(A), \qquad \delta_{p} = 0.871 \frac{\mathsf{ln}\; n}{p}.$$

Lanczos Method

Krylov subspace: $\mathcal{K}_p(A,\xi) := \operatorname{span}(\xi, A\xi, A^2\xi, \dots, A^p\xi)$.

Lanczos Algorithm

$$\hat{u}_p \in \mathsf{Argmax}ig\{\langle Ax, x
angle : x \in \mathcal{K}_p(A, \xi) \cap \mathcal{S}^{n-1}ig\}, \qquad \xi \sim \mathsf{Unif}(\mathcal{S}^{n-1}).$$

Accuracy estimate (Kuczyński and Woźniakowski, 1992)

Suppose $n \ge 8$, $p \ge 3$. Then,

$$\mathbb{E}\langle A\hat{u}_p, \hat{u}_p \rangle \geq (1 - \delta_p)\lambda_{\mathsf{max}}(A), \qquad \delta_p = 2.575 \left(\frac{\mathsf{ln}\,n}{p}\right)^2.$$

Implementing Lanczos Method

Lanczos Algorithm: $\hat{u} = \text{LanczosAlg}(A, p)$

 $(T, Q) := \mathsf{LanczosTridiag}(A, \xi, p) \text{ with } \xi \sim \mathsf{Unif}(\mathcal{S}^{n-1}).$ $\hat{x} = \mathsf{MaxEVTridiag}(T).$

return $\hat{u} := Q\hat{x}$.

Lanczos Tridiagonalization: $(T, Q) = \text{LanczosTridiag}(A, \xi, p)$

$$q_0 := \xi, \quad \alpha_0 := \langle Aq_0, q_0 \rangle, \quad r_0 := Aq_0 - \alpha_0 q_0.$$

for
$$k = 0, ..., p - 1$$
 do

$$\beta_k := ||r_k||, \quad q_{k+1} := r_k/\beta_k, \quad \alpha_{k+1} := \langle Aq_{k+1}, q_{k+1} \rangle.$$

$$r_{k+1} := Aq_{k+1} - \alpha_{k+1}q_{k+1} - \beta_k q_k.$$

return
$$T := \text{Tridiag}(\alpha_0, \dots, \alpha_p; \beta_0, \dots, \beta_{p-1}), \quad Q := [q_0, \dots, q_p].$$

Complexity: p + 1 matrix-vector products + O(np).

- Introduction
- Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- 5 Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

Drawbacks of Previously Considered Gradient Method

In the previously considered Gradient Method, we first decide on the target relative accuracy δ we want to achieve and then use at each iteration:

- Fixed oracle accuracy $\delta' := \delta/2$.
- Constant step size $a_k \equiv \delta'/(2L)$.

Disadvantages:

- Need to know δ in advance.
- The method is essentially short-step.
- Always ask for the same high oracle accuracy.

Natural idea: Use time-varying step sizes and oracle accuracies ⇒ Dual Averaging Method (same worst-case complexity).

Dual Averaging Method

$$\textstyle v_{k+1} = \mathsf{argmin}_{x \in Q} \big\{ \sum_{i=1}^k a_i [(1-\delta_i) f(w_i) + \langle g_i, x - w_i \rangle] + \frac{\beta_k}{2} \|x - x_0\|_B^2 \big\}.$$

$$\mathsf{DualAvg}\big(x_0,L,(a_k)_{k=1}^\infty,(\beta_k)_{k=0}^\infty,(\delta_k)_{k=1}^\infty\big).$$

$$v_0 \coloneqq x_0, \quad \bar{g}_0 \coloneqq 0 \ (\in \mathbb{E}^*), \quad A_0 \coloneqq C_0 \coloneqq 0 \ (\in \mathbb{R}).$$

for $k \ge 0$ do

$$w_{k+1} := (\beta_k v_k + (\beta_{k+1} - \beta_k) x_0) / \beta_{k+1}, \quad g_{k+1} \sim g(w_{k+1}, \delta_{k+1}).$$

$$A_{k+1} := A_k + a_{k+1}, \quad \bar{g}_{k+1} := (A_k \bar{g}_k + a_{k+1} g_{k+1})/A_{k+1}.$$

$$v_{k+1} := \mathsf{Prox}_{Q,B} \left(\mathsf{x}_0, \frac{A_{k+1}}{\beta_{k+1}} \bar{\mathsf{g}}_{k+1} \right).$$

$$c_{k+1} := a_{k+1} (1 - \delta_{k+1} - \frac{La_{k+1}}{\beta_{k+1}}), \quad C_{k+1} := C_k + c_{k+1}.$$

$$x_{k+1} := (C_k x_k + c_{k+1} w_{k+1})/C_{k+1}.$$

Choice of parameters:

blue of parameters.
$$a_k := 1, \qquad \beta_k := \sqrt{8\gamma_0 L k} + 2L, \qquad \delta_k := \frac{L a_k}{\beta_k} = \frac{1}{\sqrt{8\gamma_0 k/L} + 2}.$$

- Introduction
- 2 Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- **5** Dual Averaging Method
- **6** Numerical Experiments
- Application: MaxCut Problem
- Conclusions

Gradient Method vs Dual Averaging

Problem: Spectral linear regression ($\delta = 0.01$ for Gradient Method).

- Dual Averaging is by orders of magnitude faster.
- Actual # iterations is by *orders of magnitude* smaller than the theoretical one: $N(\delta) = 8\,080\,605$.

Power Oracle vs Lanczos Oracle

- Introduction
- 2 Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- **5** Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

MaxCut Problem

Let G = (V, E) be an undirected weighted graph with $V = \{1, ..., n\}$ and weights $w(\{i, j\}) > 0$ for each edge $\{i, j\} \in E$.

MaxCut problem

$$c^* = \frac{1}{4} \max_{x \in B^n} \langle Ax, x \rangle,$$

where B^n is the boolean hypercube:

$$B^n := \{x \in \mathbb{R}^n : x_i^2 = 1, i = 1, ..., n\},\$$

and $A \in \mathbb{S}^n_+$ is the Laplacian matrix of G:

$$A_{i,j} := \begin{cases} \sum_{k \colon \{i,k\} \in E} w(\{i,k\}), & \text{if } i = j, \\ -w(\{i,j\}), & \text{if } \{i,j\} \in E, \\ 0, & \text{otherwise.} \end{cases}$$

Note: NP-complete! But can be efficiently approximated.

SDP Relaxation

MaxCut problem:

$$s^* := \max_{x \in B^n} \langle Ax, x \rangle.$$

SDP relaxation:

$$f^* := \min_{z \in \mathbb{R}^n} \left\{ \sum_{i=1}^n z_i : A \leq D(z) \right\} = \max_{Y \in \mathbb{S}^n} \left\{ \langle A, Y \rangle : Y \succeq 0, \ d(Y) = e \right\},$$
Dual SDP relaxation

where $e \coloneqq (1, \dots, 1)^T \in \mathbb{R}^n$.

Accuracy of relaxation (Goemans and Williamson, 1995)

$$0.878 \cdot f^* \leq s^* \leq f^*$$
.

SDP Relaxation: Alternative Form

Problem

$$f^* = \min_{x \in \mathcal{Q}} [f(x) := \lambda_{\max}(S(x))], \qquad S(x) := D(x)AD(x),$$

where

$$Q := \left\{ x \in \mathbb{R}^n_{++} : \sum_{i=1}^n \frac{1}{x_i^2} \le 1 \right\}.$$

Oracle:

$$\hat{g}(x) := 2[A(x \odot \hat{u})] \odot \hat{u} \ [= 2d(AD(x)\hat{u}\hat{u}^T)], \quad \hat{u} \sim \mathsf{MaxEV}(S(x), \delta).$$

Choice of norm: B = D(A). Then, all our assumptions are satisfied with

$$\gamma_0 = \frac{1}{n},$$
 $x_0 = \underset{x \in Q}{\operatorname{argmin}} ||x||_B = \operatorname{Proj}_{Q,B}(0),$ $L = 2.$

Note: Since B is diagonal, projection is cheap: O(n).

Final Guarantee

We get $x_k \in Q$ with $(1 - \delta) \mathbb{E} f(x_k) \leq f^*$ in at most $N(\delta)$ iterations,

$$N(\delta) = O\left(\frac{L}{\gamma_0 \delta^2}\right) = O\left(\frac{n}{\delta^2}\right).$$

Result

For
$$\hat{f}_k \coloneqq (1 - \delta)^{-1} \langle S(x_k) \hat{u}, \hat{u} \rangle$$
, $\hat{u} \sim \mathsf{MaxEV} \big(S(x_k), \delta \big)$, we have $\alpha \mathbb{E} \hat{f}_k \le s^* \le \mathbb{E} \hat{f}_k$, $\alpha \coloneqq 0.878(1 - \delta)^2$.

Total worst-case running time:

$$N(\delta) \times \underbrace{O\left(\frac{\ln n}{\sqrt{\delta}}\right)}_{\text{Lanczos number of mat-vec products}} \times \underbrace{O(|E|)}_{\text{Cost of mat-vec product}} = O\left(\frac{n|E|\ln n}{\delta^{5/2}}\right).$$

Note: No need for very small δ : $\delta = 0.01 \implies \alpha \approx 0.86$ (instead of $\alpha' = 0.878$ for exact solution of SDP).

- Introduction
- Problem Formulation
- Gradient Method
- Oracle for Maximal Eigenvector
- **5** Dual Averaging Method
- 6 Numerical Experiments
- Application: MaxCut Problem
- 8 Conclusions

Conclusions

Overview:

- New concept of relatively inexact stochastic subgradient.
- Arises naturally when computing inexact eigenvectors by using the Power method or the Lanczos algorithm.
- Two gradient methods for large-scale optimization in relative-scale: Gradient Method with fixed stepsize and oracle accuracy and the more practical Dual Averaging.

Paper

https://arxiv.org/abs/2301.08352

Thank you!

References

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM*, 42(6):1115–1145, Nov. 1995. ISSN: 0004-5411. DOI: 10.1145/227683.227684.

J. Kuczyński and H. Woźniakowski. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start. *SIAM Journal on Matrix Analysis and Applications*, 13(4):1094–1122, Oct. 1992. DOI: 10.1137/0613066.

Y. Nesterov. Rounding of convex sets and efficient gradient methods for linear programming problems. *Optimization Methods and Software*, 23(1):109–128, Feb. 2008. DOI: 10.1080/10556780701550059.

Y. Nesterov. Unconstrained convex minimization in relative scale. *Mathematics of Operations Research*, 34(1):180–193, 2009. ISSN: 0364765X, 15265471.

Y. Nesterov. Barrier subgradient method. *Mathematical Programming*, 127(1):31-56, Oct. 2010. DOI: 10.1007/s10107-010-0421-3.