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Optimization in Relative Scale

Problem

f ∗ := min
x∈Q

f (x),

where f : E → R is a strictly positive convex function and Q ⊆ E is a
simple convex set.

Goal: Find approximate solution x̄ ∈ Q with relative accuracy δ ∈ (0, 1):

f (x̄) ≤ (1 + δ)f ∗.

Main feature: Complexity of methods does not depend on f ∗ (or data
defining the problem).
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Relative Accuracy vs Absolute Accuracy

Note:

δ-relatively inexact solution ⇐⇒ ϵ-absolutely inexact solution:

f (x̄) ≤ (1 + δ)f ∗ ⇐⇒ f (x̄)− f ∗ ≤ ϵ, ϵ := δf ∗.

However, usually we cannot achieve what we want “for free” by
simply reusing existing methods and complexity results.

Example (Gradient Method). To achieve δ-relative accuracy, it needs

N =
LR2

0

ϵ
=

LR2
0

δf ∗

iterations, where L is the Lipschitz constant of ∇f and R0 := ∥x0 − x∗∥.
Depending on f ∗, N could be very large, even if δ is moderate!

We need special methods.
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Context and Contributions

There already exist several gradient-type methods for optimization in
relative scale: (Nesterov, 2008; Nesterov, 2009; Nesterov, 2010).

However, they all work with an exact oracle (exact computations of
objective function and/or its gradient).

This work

New first-order methods with inexact stochastic oracle.
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Motivating Example

Spectral Linear Regression (SLR) problem

min
x∈Rd

∥A(x)− C∥, A(x) :=
d∑

i=1

xiAi ,

where A1, . . . ,Ad ,C ∈ Rn×m (n ≤ m), ∥·∥ is the matrix spectral norm.

Computing subgradient requires computing a pair of leading singular
vectors of an n ×m matrix.

Cost of exact computation: O(n3) =⇒ infeasible for large n (and
difficult to exploit sparsity).

But approximate singular vectors are much more affordable: they
require only a small number of matrix-vector products.

The corresponding linear algebra methods are typically randomized,
so we obtain inexact approximate subgradients.
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Problem Formulation

Problem

min
x∈Q

f (x),

where f : E → R is a convex function and Q ⊆ E is a simple convex set.

Main assumptions:

f has quadratic growth: there exists x0 ∈ Q and γ0 > 0 such that

f (x) ≥ γ0∥x − x0∥2B , ∀x ∈ Q,

where ∥h∥B := ⟨Bh, h⟩1/2.
We have a δ-relatively inexact stochastic subgradient oracle ĝ :

f (y) ≥ (1− δ)f (x) + ⟨Eξ[ĝ(x , ξ)], y − x⟩, ∀x , y ∈ Q.

The size of ĝ is relatively bounded:

Eξ[(∥ĝ(x , ξ)∥∗B)2] ≤ 2Lf (x), ∀x ∈ Q.
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Example: Squared Spectral Norm

F (X ) := ∥X∥2 = λmax(XX
T ), X ∈ Rn×m, n ≤ m.

Quadratic growth: We have (w.r.t. Frobenius norm):

γ0 =
1

n
, X0 = 0.

Relatively inexact stochastic subgradient:

Ĝ (X ) := 2ûûTX , û ∼ MaxEV(XXT , δ).

δ-relatively inexact stochastic eigenvector

Given a matrix A ∈ Sn+, compute û ∼ MaxEV(A, δ) such that

E⟨Aû, û⟩ ≥ (1− δ)λmax(A), ∥û∥ = 1.

Relative boundedness: Ĝ is relatively bounded w.r.t. F with L = 2:

∥Ĝ (X )∥2F = 4⟨XXT û, û⟩ ≤ 4λmax(XX
T ) = 4F (X ).
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Composition with Affine Mapping
Consider

f (x) = F (Ax + b), x ∈ E,
where A : E → E1, b ∈ E1, and F satisfies our assumptions:

F has quadratic growth w.r.t. ∥·∥B1 with parameters γ0 and y0.

We have δ-relative stochastic oracle Ĝ for F .

Oracle Ĝ is uniformly relatively bounded with constant L.

Define the seminorm induced by B = A∗B1A:

∥x∥B = ∥Ax∥B1 , ∀x ∈ E

and stochastic oracle

ĝ(x) := A∗Ĝ (Ax + b), x ∈ E.

Then, all properties are satisfied with the same constants γ0, L, and

x0 = argmin
x∈Q

∥Ax + b − y0∥B1 .
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Gradient Method with Relative Inexact Stochastic Oracle

ĝk ∼ ĝ(xk), xk+1 = ProxQ,B(xk , ak ĝk), k ≥ 0,

where ProxQ,B(x , s) := argminy∈Q{⟨s, y⟩+ 1
2∥y − x∥2B}, and (ak)

∞
k=0 are

deterministic step sizes.

Output point: Suppose ak < 1−δ
L for all k ≥ 0. Define

x̄k :=
1

Ck

k−1∑
i=0

cixi , Ck :=
k−1∑
i=0

ci , ci := ai (1− δ − Lai ).

Theorem. For any k ≥ 0, we have

(1−∆k)E f (x̄k) ≤ f ∗, ∆k := δ +
1− δ + 2γ0L

∑k−1
i=0 a2i

1 + 2γ0
∑k−1

i=0 ai
.
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Choice of Stepsizes

Optimal step sizes for a fixed horizon N ≥ 1

ak ≡ 1− δ√
2γ0NL(1− δ) + L2 + L

, k ≥ 0.

Convergence rate:

∆N ≤ δ +

√
2L

γ0N
=⇒ ∆N ≤ 2δ, ∀N ≥ N(δ) :=

2L

γ0δ2

Note: For SLR, we have L = 2 and γ0 =
1
n , so N(δ) = 4n

δ2
does not

depend on data defining the problem.

Constant step size based on target accuracy δ ∈ (0, 2
3
)

ak ≡ δ

2L
, k ≥ 0.

=⇒ same rate for ∆N .
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Stochastic Oracle for Maximal Eigenvector

δ-relatively inexact stochastic eigenvector (δ ∈ (0, 1))

Given a matrix A ∈ Sn+, compute û ∼ MaxEV(A, δ) such that

E⟨Aû, û⟩ ≥ (1− δ)λmax(A), ∥û∥ = 1.

How to compute MaxEV(A, δ) efficiently?
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Power Method

Let A ∈ Sn+. For an integer degree p ≥ 1, define

ûp :=
Apξ

∥Apξ∥
, ξ ∼ Unif(Sn−1).

Should be computed in a numerically stable way:

Power Method

û0 := ξ, ûk+1 :=
Aûk
∥Aûk∥

, k = 0, . . . , p − 1.

Complexity: p matrix-vector products.

Main result (Kuczyński and Woźniakowski, 1992)

Suppose n ≥ 8 and p ≥ 2. Then,

E⟨Aûp, ûp⟩ ≥ (1− δp)λmax(A), δp = 0.871
ln n

p
.
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Lanczos Method

Krylov subspace: Kp(A, ξ) := span(ξ,Aξ,A2ξ, . . . ,Apξ).

Lanczos Algorithm

ûp ∈ Argmax
{
⟨Ax , x⟩ : x ∈ Kp(A, ξ) ∩ Sn−1

}
, ξ ∼ Unif(Sn−1).

Accuracy estimate (Kuczyński and Woźniakowski, 1992)

Suppose n ≥ 8, p ≥ 3. Then,

E⟨Aûp, ûp⟩ ≥ (1− δp)λmax(A), δp = 2.575
( ln n

p

)2
.
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Implementing Lanczos Method

Lanczos Algorithm: û = LanczosAlg(A, p)

(T ,Q) := LanczosTridiag(A, ξ, p) with ξ ∼ Unif(Sn−1).

x̂ = MaxEVTridiag(T ).

return û := Qx̂ .

Lanczos Tridiagonalization: (T ,Q) = LanczosTridiag(A, ξ, p)

q0 := ξ, α0 := ⟨Aq0, q0⟩, r0 := Aq0 − α0q0.

for k = 0, . . . , p − 1 do

βk := ∥rk∥, qk+1 := rk/βk , αk+1 := ⟨Aqk+1, qk+1⟩.
rk+1 := Aqk+1 − αk+1qk+1 − βkqk .

return T := Tridiag(α0, . . . , αp;β0, . . . , βp−1), Q := [q0, . . . , qp].

Complexity: p + 1 matrix-vector products + O(np).
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Drawbacks of Previously Considered Gradient Method

In the previously considered Gradient Method, we first decide on the target
relative accuracy δ we want to achieve and then use at each iteration:

Fixed oracle accuracy δ′ := δ/2.

Constant step size ak ≡ δ′/(2L).

Disadvantages:

Need to know δ in advance.

The method is essentially short-step.

Always ask for the same high oracle accuracy.

Natural idea: Use time-varying step sizes and oracle accuracies
=⇒ Dual Averaging Method (same worst-case complexity).

Anton Rodomanov (UCLouvain) Stochastic Optimization in Relative Scale May 31, 2023 16 / 24



Dual Averaging Method

vk+1 = argminx∈Q
{∑k

i=1 ai [(1− δi )f (wi ) + ⟨gi , x − wi ⟩] + βk
2 ∥x − x0∥2B

}
.

DualAvg
(
x0, L, (ak)

∞
k=1, (βk)

∞
k=0, (δk)

∞
k=1

)
.

v0 := x0, ḡ0 := 0 (∈ E∗), A0 := C0 := 0 (∈ R).
for k ≥ 0 do

wk+1 :=
(
βkvk + (βk+1 − βk)x0

)
/βk+1, gk+1 ∼ g(wk+1, δk+1).

Ak+1 := Ak + ak+1, ḡk+1 := (Ak ḡk + ak+1gk+1)/Ak+1.

vk+1 := ProxQ,B

(
x0,

Ak+1

βk+1
ḡk+1

)
.

ck+1 := ak+1(1− δk+1 − Lak+1

βk+1
), Ck+1 := Ck + ck+1.

xk+1 := (Ckxk + ck+1wk+1)/Ck+1.

Choice of parameters:

ak := 1, βk :=
√

8γ0Lk + 2L, δk :=
Lak
βk

=
1√

8γ0k/L+ 2
.
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Gradient Method vs Dual Averaging

Problem: Spectral linear regression (δ = 0.01 for Gradient Method).
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Dual Averaging is by orders of magnitude faster.

Actual # iterations is by orders of magnitude smaller than the
theoretical one: N(δ) = 8 080 605.
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Power Oracle vs Lanczos Oracle
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MaxCut Problem

Let G = (V ,E ) be an undirected weighted graph with V = {1, . . . , n} and
weights w({i , j}) > 0 for each edge {i , j} ∈ E .

MaxCut problem

c∗ =
1

4
max
x∈Bn

⟨Ax , x⟩,

where Bn is the boolean hypercube:

Bn := {x ∈ Rn : x2i = 1, i = 1, . . . , n},

and A ∈ Sn+ is the Laplacian matrix of G :

Ai ,j :=


∑

k : {i ,k}∈E w({i , k}), if i = j ,

−w({i , j}), if {i , j} ∈ E ,

0, otherwise.

Note: NP-complete! But can be efficiently approximated.
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SDP Relaxation

MaxCut problem:
s∗ := max

x∈Bn
⟨Ax , x⟩.

SDP relaxation:

f ∗ := min
z∈Rn

{ n∑
i=1

zi : A ⪯ D(z)
}

︸ ︷︷ ︸
Dual SDP relaxation

= max
Y∈Sn

{
⟨A,Y ⟩ : Y ⪰ 0, d(Y ) = e

}
︸ ︷︷ ︸

Primal SDP relaxation

,

where e := (1, . . . , 1)T ∈ Rn.

Accuracy of relaxation (Goemans and Williamson, 1995)

0.878 · f ∗ ≤ s∗ ≤ f ∗.
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SDP Relaxation: Alternative Form

Problem

f ∗ = min
x∈Q

[
f (x) := λmax

(
S(x)

)]
, S(x) := D(x)AD(x),

where
Q :=

{
x ∈ Rn

++ :
n∑

i=1

1

x2i
≤ 1

}
.

Oracle:

ĝ(x) := 2[A(x ⊙ û)]⊙ û
[
= 2d(AD(x)ûûT )

]
, û ∼ MaxEV

(
S(x), δ

)
.

Choice of norm: B = D(A). Then, all our assumptions are satisfied with

γ0 =
1

n
, x0 = argmin

x∈Q
∥x∥B = ProjQ,B(0), L = 2.

Note: Since B is diagonal, projection is cheap: O(n).
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Final Guarantee

We get xk ∈ Q with (1− δ)E f (xk) ≤ f ∗ in at most N(δ) iterations,

N(δ) = O
( L

γ0δ2

)
= O

( n

δ2

)
.

Result

For f̂k := (1− δ)−1⟨S(xk)û, û⟩, û ∼ MaxEV
(
S(xk), δ

)
, we have

αE f̂k ≤ s∗ ≤ E f̂k , α := 0.878(1− δ)2.

Total worst-case running time:

N(δ)× O
( ln n√

δ

)
︸ ︷︷ ︸

Lanczos number of
mat-vec products

× O(|E |)︸ ︷︷ ︸
Cost of

mat-vec product

= O
(n|E | ln n

δ5/2

)
.

Note: No need for very small δ: δ = 0.01 =⇒ α ≈ 0.86 (instead of
α′ = 0.878 for exact solution of SDP).
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Conclusions

Overview:

New concept of relatively inexact stochastic subgradient.

Arises naturally when computing inexact eigenvectors by using the
Power method or the Lanczos algorithm.

Two gradient methods for large-scale optimization in relative-scale:
Gradient Method with fixed stepsize and oracle accuracy and the
more practical Dual Averaging.

Paper

https://arxiv.org/abs/2301.08352

Thank you!
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