Optimizing (L_0, L_1) -Smooth Functions by Gradient Methods

Anton Rodomanov (CISPA, Germany)
(joint work with D. Vankov, A. Nedich, L. Sankar, and S. Stich)

3 December 2024 Research Seminar at WIAS Berlin, Germany

Outline

- Motivation
- (L_0, L_1) -Smooth Functions
- Gradient Descent (GD)
- 4 Other Algorithms
- 5 Fast Gradient Method (FGM)
- **6** Experiments
- Conclusions

Motivation

Classical Theory for Gradient Descent

Optimization problem: $f^* := \min_{x \in \mathbb{R}^d} f(x)$, where f is smooth.

Gradient Descent (GD):

$$x_{k+1} = x_k - \eta \nabla f(x_k), \qquad k \geq 0.$$

The standard assumption for analyzing GD is that f is Lipschitz-smooth:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d,$$

which is equivalent to the boundedness of the second derivative:

$$||\nabla^2 f(x)|| \le L,$$
 $\forall x \in \mathbb{R}^d.$

Under this assumption, the theory suggests choosing the stepsize

$$\eta = \frac{1}{L}$$

which ensures the good convergence rate of the method.

Are All Smooth Functions Lipschitz-Smooth?

Many smooth functions arising in applications are not Lipschitz-smooth...

For example,
$$f(x) = |x|^p$$
 for $p > 2$ or $f(x) = e^x$.

How do we solve optimization problems involving such functions?

Relative Smoothness [Bauschke et al. 2017; Lu et al. 2018]

Instead of Lipschitz-smoothness, we can consider relative smoothness:

$$\overline{\nabla^2 f(x)} \leq L \overline{\nabla^2 \rho(x)}, \qquad x \in \mathbb{R}^d,$$

where ρ is a certain convex "reference function".

Then, we can apply the Bregman GD / Mirror Descent:

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + L\beta_{\rho}(x_k, x) \},$$

where $\beta_{\rho}(x,y) := \rho(y) - \rho(x) - \langle \nabla \rho(x), y - x \rangle$ is the Bregman distance generated by ρ .

Example: $f(x) = \frac{1}{4} ||Ax - b||^4 + \frac{1}{2} ||Cx - d||^2$ is smooth relative to $\rho(x) = \frac{1}{4} ||x||^4 + \frac{1}{2} ||x||^2$.

This is a very powerful technique but requires fixing the reference function ρ in advance.

(L_0, L_1) -Smooth Functions [J. Zhang et al. 2020]

In this work, we concentrate instead on another interesting smoothness assumption referred to as (L_0, L_1) -smoothness:

$$||\nabla^2 f(x)|| \le L_0 + L_1 ||\nabla f(x)||,$$
 $\forall x \in \mathbb{R}^d.$

Original motivation: Empirical study of loss functions in Neural Networks for Natural Language Processing (NLP) problems.

NB: f is L-smooth $\iff f$ is (L,0)-smooth.

Basic example: Any polynomial $f(x) = \sum_{i=0}^{d} a_i x^i$ $(a_i \in \mathbb{R})$ of degree $d \geq 3$ is (L_0, L_1) -smooth but not Lipschitz-smooth.

Indeed, $f'(x) = \sum_{i=1}^d ia_i x^{i-1}$, $f''(x) = \sum_{i=2}^d i(i-1)a_i x^{i-2}$. Therefore $\frac{|f''(x)|}{|f'(x)|} \to 0$ as $|x| \to \infty$, while |f''(x)| is bounded on any compact interval.

Clipped GD

A popular algorithm that provably works for (L_0, L_1) -smooth functions is the Clipped GD:

$$x_{k+1} = x_k - \eta_k \nabla f(x_k), \qquad \eta_k = \min \left\{ \eta, \frac{\gamma}{\|\nabla f(x_k)\|} \right\},$$

where $\eta = \Theta(\frac{1}{L_0})$ and $\gamma = \Theta(\frac{1}{L_1})$.

- [J. Zhang et al. 2020] showed that, to find an ϵ -stationary point $(\|\nabla f(\bar{x})\| \le \epsilon)$, Clipped GD needs at most $O(\frac{L_0F_0}{\epsilon^2} + \frac{L_1^2F_0}{L_0})$ gradient computations, where $F_0 := f(x_0) f^*$.
- [Koloskova et al. 2023] further improved it up to $O(\frac{L_0F_0}{\epsilon^2} + \frac{L_1F_0}{\epsilon})$.

CF: Standard GD for *L*-smooth functions has complexity of $O(\frac{LF_0}{\epsilon^2})$.

Motivation for This Work

- Further study of (L_0, L_1) -class: main inequalities and properties.
- Why does Clipped GD work for this class? How "natural" is this method and is there any good interpretation for it?
- What is the efficiency of gradient methods when our problem is additionally convex? Can we improve upon the previously known algorithms/results?

 (L_0, L_1) -Smooth Functions

Basic Examples

Recall the definition: $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$.

Examples:

- (exponent) $f(x) = e^x$ is (L_0, L_1) -smooth with $L_0 = 0$ and $L_1 = 1$.
- ② (logistic function) $f(x) = \ln(1 + e^x)$ is (L_0, L_1) -smooth with arbitrary $L_1 \in [0, 1]$ and $L_0 = \frac{1}{4}(1 L_1)^2$.
- **(**power of Euclidean norm) $f(x) = \frac{1}{p} ||x||^p$, where p > 2, is (L_0, L_1) -smooth with arbitrary $L_1 > 0$ and $L_0 = (\frac{p-2}{L_1})^{p-2}$.

NB: For the same function, the choice of (L_0, L_1) may not be unique.

Calculus of (L_0, L_1) -Smooth Functions

In general, the class is not closed under summation or affine substitution of the arguments. Nevertheless, the class is still closed under some operations.

- If f_i is $(L_{0,i}, L_{1,i})$ -smooth for each $1 \le i \le n$, then $f(x) = \sum_{i=1}^n f_i(x_i)$, where $x \equiv (x_1, \dots, x_n)$, is (L_0, L_1) -smooth with $L_0 = \max_{1 \le i \le n} L_{0,i}$ and $L_1 = \max_{1 \le i \le n} L_{1,i}$.
- ② If f is (L_0, L_1) -smooth and g is L-smooth and M-Lipschitz, then f+g is (L'_0, L'_1) -smooth with $L'_0 = L_0 + ML_1 + L$ and $L'_1 = L_1$.
- If $h(x) = f(\langle a, x \rangle + b)$ and f is (L_0, L_1) -smooth, then h is (L'_0, L'_1) -smooth with $L'_0 = ||a||^2 L_0$ and $L'_1 = ||a|| L_1$.

Main Inequalities

Theorem. Function f is (L_0, L_1) -smooth iff any of the following inequalities holds for any $x, y \in \mathbb{R}^d$:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \frac{e^{L_1 \|y - x\|} - 1}{L_1},$$
$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le (L_0 + L_1 \|\nabla f(x)\|) \frac{\phi(L_1 \|y - x\|)}{L_1^2},$$

where $\phi(t) := e^t - t - 1$.

CF: These bounds are tighter than those from (B. Zhang et al. 2020; Li et al. 2024).

Lower Bound for Convex Functions

Theorem. Let f be a convex (L_0, L_1) -smooth function. Then, for any $x, y \in \mathbb{R}^d$, we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_0 + L_1 \|\nabla f(y)\|}{L_1^2} \phi_* \Big(\frac{L_1 \|\nabla f(y) - \nabla f(x)\|}{L_0 + L_1 \|\nabla f(y)\|} \Big),$$

where $\phi_*(\gamma) = (1+\gamma)\ln(1+\gamma) - \gamma \ (\geq \frac{\gamma^2}{2+\gamma})$ is conjugate to ϕ .

Corollary 1:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\|\nabla f(y) - \nabla f(x)\|^2}{2(L_0 + L_1 \|\nabla f(y)\|) + L_1 \|\nabla f(y) - \nabla f(x)\|}.$$

Corollary 2:

$$f(x) - f^* \ge \frac{\|\nabla f(x)\|^2}{2L_0 + 3L_1\|\nabla f(x)\|}.$$

Gradient Descent (GD)

Minimizing Upper Bound

Natural idea: Minimize the upper bound on the objective:

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + (L_0 + L_1 || \nabla f(x) ||) \frac{\phi(L_1 || y - x ||)}{L_1^2},$$

where $\phi(t) = e^t - t - 1$.

The optimal point $y^* = T(x)$ is the result of the gradient step:

$$T(x) = x - r^* \frac{\nabla f(x)}{\|\nabla f(x)\|}, \qquad r^* = \frac{1}{L_1} \ln \Big(1 + \frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \Big),$$

resulting in the following bound on improving the function value:

$$f(x) - f(T(x)) \ge \max_{r \ge 0} \left\{ \|\nabla f(x)\|_r - \frac{L_0 + L_1 \|\nabla f(x)\|}{L_1^2} \phi(L_1 r) \right\}$$
$$= \frac{L_0 + L_1 \|\nabla f(x)\|}{L_1^2} \phi_* \left(\frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \right).$$

Optimal Stepsize

Thus, the point y^* minimizing the upper bound on the objective is the result of the gradient step

$$T(x) = x - \eta^* \nabla f(x),$$

where the optimal stepsize is given by

$$\eta^* = \frac{1}{L_1 \|\nabla f(x)\|} \ln \left(1 + \frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \right).$$

The corresponding progress in decreasing the objective is

$$f(x) - f(T(x)) \ge \frac{L_0 + L_1 \|\nabla f(x)\|}{L_1^2} \phi_* \Big(\frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \Big) =: \Delta(x).$$

Simplified Stepsize

The function ϕ_* satisfies $\frac{\gamma^2}{2+\gamma} \le \phi_*(\gamma) \le \frac{\gamma^2}{2}$.

From this estimate, it follows that $\Delta(x) \sim \frac{\|\nabla f(x)\|^2}{L_0 + L_1 \|\nabla f(x)\|}$. More precisely:

$$\frac{\|\nabla f(x)\|^2}{2L_0 + 3L_1\|\nabla f(x)\|} \le \Delta(x) \le \frac{\|\nabla f(x)\|^2}{2(L_0 + L_1\|\nabla f(x)\|)}.$$

Thus, the gurantee for the optimal stepsize can be simplified:

$$f(x) - f(T(x)) \ge \frac{\|\nabla f(x)\|^2}{2L_0 + 3L_1\|\nabla f(x)\|}.$$

We can obtain the same guarantee by using the simplified stepsize

$$\eta_{si} = \frac{1}{L_0 + \frac{3}{2}L_1\|\nabla f(x)\|}.$$

Clipping Stepsize

Note that our simplified stepsize is essentially the clipping stepsize:

$$\eta_{\rm si} \sim \frac{1}{L_0 + L_1 \|\nabla f(x)\|} \sim \frac{1}{\max\{L_0, L_1 \|\nabla f(x)\|\}} = \min\Bigl\{\frac{1}{L_0}, \frac{1}{L_1 \|\nabla f(x)\|}\Bigr\}.$$

For the clipping stepsize

$$\boxed{\eta_{\mathrm{cl}} = \min\Bigl\{\frac{1}{2L_0}, \frac{1}{3L_1\|\nabla f(x)\|}\Bigr\},}$$

we can show a similar bound on the function progress as before:

$$f(x) - f(T(x)) \ge \frac{\|\nabla f(x)\|^2}{2(2L_0 + 3L_1\|\nabla f(x)\|)}.$$

Various Stepsize Choices: Summary

We have shown that the gradient step

$$T(x) = x - \eta(x)\nabla f(x)$$

is a natural operation minimizing the upper bound on the objective.

The following three stepsizes are equivalent (up to absolute constants) in terms of the objective progress:

- **①** (Optimal stepsize) $\eta^*(x) = \frac{1}{L_1 \|\nabla f(x)\|} \ln(1 + \frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|}).$
- ② (Simplified stepsize) $\eta_{\rm si}(x) = \frac{1}{L_0 + \frac{3}{2}L_1\|\nabla f(x)\|}$.

These stepsizes satisfy $\eta_{\rm cl}(x) \le \eta_{\rm si}(x) \le \eta^*(x)$ and all ensure that

$$f(x) - f(T(x)) \ge \frac{\|\nabla f(x)\|^2}{c(2L_0 + 3L_1\|\nabla f(x)\|)},$$

where c = 1 for the first two choices and c = 2 for the third one.

GD: Convergence to Stationary Point

Consider now GD

$$x_{k+1} = x_k - \eta(x_k) \nabla f(x_k), \qquad k \ge 0,$$

where $\eta(\cdot)$ is one of the stepsize formulas considered before.

Theorem. For any given $\epsilon > 0$, to reach $\min_{0 \le i \le k-1} ||\nabla f(x_i)|| \le \epsilon$, it suffices to make the following number of iterations:

$$k \geq \frac{(2c)L_0F_0}{\epsilon^2} + \frac{(3c)L_1F_0}{\epsilon},$$

where $F_0 = f(x_0) - f^*$, c = 1 for the optimal and simplified stepsizes, and c = 2 for the clipping stepsize.

CF: This coincides with the best-known rate for the clipped GD from (Koloskova et al. 2023).

Efficiency on Convex Functions

Consider the same method but now additionally assume that f is convex.

Theorem. Let $F_0 := f(x_0) - f^*$. Then, $f(x_k) - f^* \le \epsilon$ for any given $0 \le \epsilon < F_0$ whenever

$$k \geq (2c)\frac{L_0R^2}{\epsilon} + (3c)L_1R\ln\frac{F_0}{\epsilon} =: k(\epsilon),$$

where $R := \|x_0 - x^*\|$ and $c \in \{1, 2\}$ depending on the stepsize strategy. Furthermore, the distance $\|x_k - x^*\|$ decreases monotonically.

NB: In the worst case, $F_0 \le \frac{L_0 R^2}{2} \exp(L_1 R)$ and $k(\epsilon) \le c(2 + \frac{3}{e}) \frac{L_0 R^2}{\epsilon} + c(3 + \frac{1}{e}) L_1^2 R^2$.

CF: The previous best-known result for the method from (Li et al. 2024) was enjoying the much worse estimate of $O(\frac{(L_0 + L_1 || \nabla f(x_0) ||) R^2}{\epsilon})$.

Other Algorithms

Normalized Gradient Method

We can also consider the Normalized Gradient Method (NGM):

$$x_{k+1} = x_k - \frac{\beta_k}{\|\nabla f(x_k)\|} \nabla f(x_k), \qquad k \ge 0.$$

Theorem. Consider NGM run for K iterations with constant coefficients:

$$\beta_k = \frac{\hat{R}}{\sqrt{K}}, \qquad 0 \le k \le K - 1.$$

Then, for any given $\epsilon > 0$, we have $\min_{0 \le k \le K} f(x_k) - f^* \le \epsilon$ whenever

$$K+1 \geq \max\Bigl\{\frac{L_0\bar{R}^2}{\epsilon}, \frac{4}{9}L_1^2\bar{R}^2\Bigr\},$$

where $\bar{R}:=rac{R^2}{\hat{R}}+\hat{R}$ and $R:=\|x_0-x^*\|.$

NB: We can also use time-varying coefficients $\beta_k = \frac{R}{\sqrt{k+1}}$. The complexity is the same up to an extra logarithmic factor.

Gradient Method with Polyak Stepsize

Another interesting method is GM with Polyak Stepsize:

$$x_{k+1} = x_k - \frac{f(x_k) - f^*}{\|\nabla f(x_k)\|^2} \nabla f(x_k), \qquad k \ge 0.$$

It also achieves the same complexity (up to absolute constants).

Fast Gradient Method (FGM)

Main idea

- In the region $Q := \{x : \|\nabla f(x)\| \le \Delta\}$, the function f is essentially standard L-smooth with $L = L_0 + L_1\Delta$.
- ② If we could stay inside Q (defined e.g., by $\Delta = \|\nabla f(x_0)\|$), then by running the standard FGM, we can expect the following complexity to find an ϵ -solution: $O(\sqrt{\frac{LR^2}{\epsilon}}) = O(\sqrt{\frac{(L_0 + L_1 \Delta)R^2}{\epsilon}})$.
- However, we cannot guarantee that FGM stays in Q.
- **4** But we can ensure that the iterates remain in the initial sublevel set, $\mathcal{F}_0 := \{x : f(x) \le f(x_0)\}$ on which

$$\psi(\|\nabla f(x)\|) \le f(x) - f^* \le f(x_0) - f^* := F_0,$$

where $\psi(\gamma) := \frac{\gamma^2}{2L_0 + 3L_1\gamma}$. This means that, for any $x \in \mathcal{F}_0$,

$$\|\nabla f(x)\| \le \psi^{-1}(F_0) =: \Delta \le \sqrt{2L_0F_0} + 3L_1F_0,$$

and so

$$L \le L_0 + L_1 \psi^{-1}(F_0) \le 2L_0 + \frac{7}{2}L_1^2 F_0.$$

Monotone FGM

Algorithm AGMsDR($x_0, T(\cdot), L, K$) [Nesterov et al. 2021]

```
1: v_0 = x_0, A_0 = 0.

2: for k = 0, 1, ..., K - 1 do

3: y_k = \underset{k+1}{\operatorname{argmin}}_y \{ f(y) : y = v_k + \beta(x_k - v_k), \ \beta \in [0, 1] \}.

4: x_{k+1} = T(y_k).

5: Find a_{k+1} > 0 from La_{k+1}^2 = A_k + a_{k+1}. Set A_{k+1} = A_k + a_{k+1}.

6: v_{k+1} = v_k - a_{k+1} \nabla f(y_k).

return x_K.
```

This method works for any $T(\cdot)$ such that

$$f(y) - f(T(y)) \ge \frac{1}{2L} \|\nabla f(y)\|^2, \quad \forall y \in \mathcal{F}_0.$$

In our case, $T(y) = y - \eta(y)\nabla f(y)$, where $\eta(\cdot)$ is one of the stepsize strategies considered earlier.

Efficiency Bounds

Theorem. To ensure that $f(x_k) - f^* \le \epsilon$ for any given $\epsilon > 0$, AGMsDR needs at most the following number of gradient-oracle calls:

$$O\Big(\frac{m}{\sqrt{\frac{(L_0 + L_1^2 F_0)R^2}{\epsilon}}}\Big)$$

where m is the complexity of finding y_k at each iteration.

NB: This is much better than the previous best result for the method from (Li et al. 2024): $O((L_1^2R^2 + \frac{L_1^2F_0}{L_0} + 1)\sqrt{\frac{L_0R^2 + F_0}{\epsilon}})$.

Two-stage acceleration procedure

- Run GD to find x_0 such that $F_0 \equiv f(x_0) f^* \le \frac{L_0}{5L_1^2}$.
- 2 Run AGMsDR from x_0 .

Efficiency:
$$O(L_1^2R^2 + m\sqrt{\frac{L_0R^2}{\epsilon}})$$
.

Experiments

Experiments

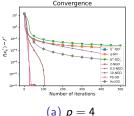
We use the following test problem:

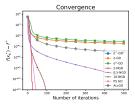
$$\min_{x\in\mathbb{R}^d}\Big\{f(x):=\frac{1}{p}\|x\|^p\Big\}.$$

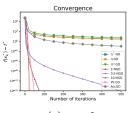
The initial point x_0 is chosen such that $||x_0|| = R$ with R = 10. We choose

$$L_1 = 1,$$
 $L_0 = \left(\frac{p-2}{L_1}\right)^{p-2}.$

Comparison between different methods:







a)
$$p = 4$$

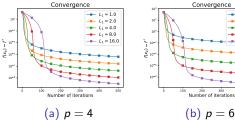
(b)
$$p = 6$$

(c)
$$p = 8$$

Experiments – II

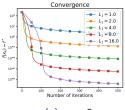
Recall that $L_1 > 0$ can be arbitrary for the same problem.

GD with optimal stepsize for different choices of L_1 :



L₁ = 1.0

 $L_1 = 2.0$



(c) p = 8

Conclusions

- We have seen that GD is a natural method for (L_0, L_1) -smooth functions, obtained by minimizing the upper bound on the objective.
- The clipping stepsize is a simplification of the corresponding optimal stepsize ensuring the same bound on the function progress.
- In the convex case, we have obtained complexities of $O(\frac{L_0R^2}{\epsilon} + L_1R\ln\frac{F_0}{\epsilon})$ and $O(m\sqrt{\frac{L_0R^2}{\epsilon}} + L_1^2R^2)$ for the basic and accelerated methods, respectively.

Open questions: Acceleration of first stage? Removing line search? Lower bounds? Alternative smoothness assumptions?

Paper (arXiv:2410.10800)

Optimizing (L_0, L_1) -Smooth Functions by Gradient Methods D. Vankov, A. Rodomanov, A. Nedich, L. Sankar, S. Stich

References I

- H. H. Bauschke, J. Bolte, and M. Teboulle. A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications. Mathematics of Operations Research, 42(2):330–348, 2017.
- A. Koloskova, H. Hendrikx, and S. U. Stich. Revisiting Gradient Clipping: Stochastic Bias and Tight Convergence Guarantees. In International Conference on Machine Learning, pages 17343–17363. PMLR, 2023.
- H. Li, J. Qian, Y. Tian, A. Rakhlin, and A. Jadbabaie. Convex and Non-convex Optimization Under Generalized Smoothness. Advances in Neural Information Processing Systems, 36, 2024.
- H. Lu, R. M. Freund, and Y. Nesterov. Relatively Smooth Convex Optimization by First-Order Methods, and Applications. **SIAM Journal on Optimization**, 28(1):333–354, 2018.

References II

Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky. Primal–dual accelerated gradient methods with small-dimensional relaxation oracle. **Optimization Methods and Software**, 36(4):773–810, 2021.

B. Zhang, J. Jin, C. Fang, and L. Wang. Improved Analysis of Clipping Algorithms for Non-convex Optimization. **Advances in Neural Information Processing Systems**, 33:15511–15521, 2020.

J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why Gradient Clipping Accelerates Training: A Theoretical Justification for Adaptivity. In 8th International Conference on Learning Representations, 2020.