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Motivation



Classical Theory for Gradient Descent

Optimization problem: f* := min,cra f(x), where f is smooth.

Gradient Descent (GD):

Xp+1 = Xk — NV F(xk),

k > 0.

The standard assumption for analyzing GD is that f is Lipschitz-smooth:

IVF(x) = Vi)l < Lix =y

I,  Vx,yeRY

which is equivalent to the boundedness of the second derivative:

IV ()]l < L,

Vx € RY.

Under this assumption, the theory suggests choosing the stepsize

77:[

which ensures the good convergence rate of the method.
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Are All Smooth Functions Lipschitz-Smooth?

Many smooth functions arising in applications are not Lipschitz-smooth. ..
For example, f(x) = |x|P for p > 2 or f(x) = €*.

How do we solve optimization problems involving such functions?
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Relative Smoothness [Bauschke et al. 2017; Lu et al. 2018]

Instead of Lipschitz-smoothness, we can consider relative smoothness:

V2f(x) = LV?p(x), x € RY,

where p is a certain convex “reference function”.

Then, we can apply the Bregman GD / Mirror Descent:

X1 = argmjn{f(xk) + (VF(xk), x — xi) + LBp(xk, x)},
x€eR

where B,(x,y) = p(y) — p(x) — (Vp(x),y — x) is the Bregman distance
generated by p.

Example: f(x) = }|[Ax — b||* + 3|/ Cx — d||? is smooth relative to
p(x) = ZlxI* + 3117

This is a very powerful technique but requires fixing the reference
function p in advance.
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(Lo, L1)-Smooth Functions [J. Zhang et al. 2020]

In this work, we concentrate instead on another interesting smoothness
assumption referred to as (Lo, L1)-smoothness:

V2 (x)|| < Lo + L1 || VF(x)], Vx € RY.

Original motivation: Empirical study of loss functions in Neural
Networks for Natural Language Processing (NLP) problems.

NB: f is L-smooth <= f is (L,0)-smooth.

Basic example: Any polynomial f(x) = Z:'j:o aix' (aj € R) of
degree d > 3 is (Lg, L1)-smooth but not Lipschitz-smooth.
Indeed, f/(x) = 2%, iaix=1, £7(x) = 329, i(i — 1)aix’~2. Therefore

||';,(:))|| — 0 as |x| — oo, while |f”(x)| is bounded on any compact interval.
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Clipped GD

A popular algorithm that provably works for (Lo, L1)-smooth functions is
the Clipped GD:

Xt == VT (). = min{n o

where n = @(L%) and v = @(L%)

@ [J. Zhang et al. 2020] showed that, to find an e-stationary point

(IVF(x)|| <€), Clipped GD needs at most O(% + %)FO) gradient
computations, where Fy = f(xp) — f*.

@ [Koloskova et al. 2023] further improved it up to O(% + @)

CF: Standard GD for L-smooth functions has complexity of O(LFO)
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Motivation for This Work

e Further study of (Lo, L1)-class: main inequalities and properties.

@ Why does Clipped GD work for this class? How “natural” is this
method and is there any good interpretation for it?

@ What is the efficiency of gradient methods when our problem is
additionally convex? Can we improve upon the previously known
algorithms/results?
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(Lo, L1)-Smooth Functions



Basic Examples

Recall the definition: ||V2f(x)|| < Lo + L1||VF(x)||.

Examples:

Q (exponent) f(x) = e~ is (Lo, L1)-smooth with Lo =0 and L; = 1.

@ (logistic function) f(x) = In(1 + €*) is (Lo, L1)-smooth with arbitrary
L, e [O, 1] and Lg = %(1 — L1)2.

@ (power of Euclidean norm) f(x) = %||x||”, where p > 2, is
(Lo, L1)-smooth with arbitrary L; > 0 and Lo = (PT—12)p—2_

NB: For the same function, the choice of (Lo, L1) may not be unique.
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Calculus of (Lo, L1)-Smooth Functions

In general, the class is not closed under summation or affine substitution
of the arguments. Nevertheless, the class is still closed under some
operations.

@ If fiis (Lo i, L1,;)-smooth for each 1 < i < n, then f(x) = > 7, fi(x;),
where x = (x1,...,Xn), is (Lo, L1)-smooth with Lo = maxi<j<, Lo
and L1 = MaXi<i<n LL,'.

@ If fis (Lo, L1)-smooth and g is L-smooth and M-Lipschitz, then
f+ g is (Ly, Ly)-smooth with L = Lo+ MLy + L and L} = L;.

@ If h(x) =f((a,x) + b) and f is (Lo, L1)-smooth, then h is
(Lg, L})-smooth with L) = ||a[|?Lo and L} = ||a||L;.
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Main Inequalities

Theorem. Function f is (Lo, L1)-smooth iff any of the following
inequalities holds for any x,y € R9:

elally=xIl — 1
e
f(y) — F(x) = (VF(x),y — x)| < (Lo + L1[|VF(x )||)M

IVE(y) = VEX)I < (Lo + LI V(X))

Y

where ¢(t) = et —t — 1.

CF: These bounds are tighter than those from (B. Zhang et al. 2020; Li
et al. 2024).
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Lower Bound for Convex Functions

Theorem. Let f be a convex (L, L1)-smooth function. Then, for any
X,y € RY, we have

Lo+ LIVFWI , (LlVF(y) = V()
1) 2 FO+{(VA)y =X+ === 50 (o).

where ¢.(7) = (1 4+)In(1+v) —~ (> 5:%) is conjugate to ¢.

Corollary 1:

IVE(y) = VE(x)|?

Fy) 2 PO VI y =X 5 LR + LIVAG) — VR

Corollary 2:

. [VF(x)|2
F(x) — F* >
(*) = 200 + 3L ||VF(X)]|
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Gradient Descent (GD)



Minimizing Upper Bound
Natural idea: Minimize the upper bound on the objective:

F(y) < F0) + (VG y — x) + (Lo + Lo VF(x )||)(L1”ylx”),

where ¢(t) = et —t — 1.

The optimal point y* = T(x) is the result of the gradient step:
o Vix) 1 L[V
T(x)=x— In
) ror 0" s nivreon)

resulting in the following bound on improving the function value:

() = £(700) = max{ 97 - 22 o)

_ Lot LIl LIV )
2 LT LIVAI
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Optimal Stepsize

Thus, the point y* minimizing the upper bound on the objective is the
result of the gradient step

T(x) = x =n"Vf(x),

where the optimal stepsize is given by

*

L1||Vf(x
. IV

1
LAl (1 e L1HVf(X)H>'

The corresponding progress in decreasing the objective is

Lo+ L1||VF(x)| L[|Vl _.
Fx) = H(T(x) 2 12 o(ms wrean) = A0
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Simplified Stepsize
The function ¢, satisfies % < du(y) < 772

2
From this estimate, it follows that A(x) ~ %. More precisely:

VA2 VA2
2L + 3L VAT = 20 S A+ L[V AT

Thus, the gurantee for the optimal stepsize can be simplified:

IV ()12
FO) = AT 2 5130 v

We can obtain the same guarantee by using the simplified stepsize

1
M Lo+ 3LV
0 ) 1 X

3 December 2024 15 /27



Clipping Stepsize

Note that our simplified stepsize is essentially the clipping stepsize:

1 1 o n{ 1 1 }
si ™~ ~ |
B Lo+ LIVFG)  max{Lo, LIVF(x)IT} Lo’ L[VF)]

For the clipping stepsize

min{ 513w
el = MM o1 3L V(X))

we can show a similar bound on the function progress as before:

IVF(x)|I?
f(x) —f(T(x)) > 2(2Lo + 3L1||[VF(X)|)
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Various Stepsize Choices: Summary

We have shown that the gradient step

T(x) = x —n(x)Vf(x)
is a natural operation minimizing the upper bound on the objective.

The following three stepsizes are equivalent (up to absolute constants) in
terms of the objective progress:

@ (Optimal stepsize) n*(x) = LUVACII_y,

1
e M+ Lo rean

@ (Simplified stepsize) 7si(x) = m.

© (Clipping stepsize) n.(x) = min{i, m}

These stepsizes satisfy 7¢1(x) < 7si(x) < n*(x) and all ensure that

[V £(x)?
2L + 3L1||VF(X)]))’

)~ F(T() =

where ¢ = 1 for the first two choices and ¢ = 2 for the third one.
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GD: Convergence to Stationary Point
Consider now GD

Xk+1 = xk — N(xk) VI (xk), k>0,
where 7(-) is one of the stepsize formulas considered before.

Theorem. For any given € > 0, to reach ming<j<x—1||Vf(x;)|| <, it
suffices to make the following number of iterations:

k >

(2¢c)LoFo N (3¢c)L1Fo

€2 €

where Fy = f(xp) — f*, ¢ = 1 for the optimal and simplified stepsizes, and
c = 2 for the clipping stepsize.

CF: This coincides with the best-known rate for the clipped GD
from (Koloskova et al. 2023).
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Efficiency on Convex Functions

Consider the same method but now additionally assume that f is convex.

Theorem. Let Fy = f(xp) — f*. Then, f(xx) — f* < € for any given
0 < e < Fy whenever

LoR?
€

k > (2¢) + (3¢)L1iRIn % =: k(e),

where R = ||xog — x*|| and ¢ € {1,2} depending on the stepsize strategy.
Furthermore, the distance ||xx — x*|| decreases monotonically.

NB: In the worst case, Fy < L°2Rz exp(L1R) and

k(e) < c(2+ 3)BR 4 ¢(3+ 1)12R2.

€

CF: The previous best-known result for the method from (Li et al. 2024)

2
was enjoying the much worse estimate of O((L°+L1”V€f(x°)”)R ).
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Other Algorithms



Normalized Gradient Method
We can also consider the Normalized Gradient Method (NGM):

Xk+1 = Xk — ﬂVf(Xk), k 2 0.

Theorem. Consider NGM run for K iterations with constant coefficients:

R
Bk_\/_ﬁa

Then, for any given € > 0, we have ming<x<x f(xx) — f* < € whenever

0<k<K-1

LoR% 4 -
K-l-lZmax{ 0 ,§L§R2},
€

where R = %2 + R and R =[x — x*|.

. . . .« . _ R
NB: We_ ca_n also use time-varying coefﬁaehts ﬁ.k = i The
complexity is the same up to an extra logarithmic factor.
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Gradient Method with Polyak Stepsize

Another interesting method is GM with Polyak Stepsize:

f(Xk) — f*

— —HVf(Xk)sz’((Xk)’ k > 0.

Xk+1 = Xk

It also achieves the same complexity (up to absolute constants).
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Fast Gradient Method (FGM)



Main idea

© In the region Q == {x : [|[Vf(x)| < A}, the function f is essentially
standard L-smooth with L = Lo + L1 A.

@ If we could stay inside Q (defined e.g., by A = ||[Vf(xp)||), then by
running the standard FGM, we can expect the following complexity to

find an e-solution: O(\/LTRQ) = O( M).

© However, we cannot guarantee that FGM stays in Q.
© But we can ensure that the iterates remain in the initial sublevel set,
Fo = {x: f(x) < f(xo)} on which

DIV < F(x) = £ < f(x0) = 7 = Fo,
where () = ﬁ This means that, for any x € Fo,
IV < ¥ (Fo) = A < v/2LoFo + 3LaFo,

and so
L < Lo+ Ly (Fo) < 2Lo + LL3F,.
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Monotone FGM

Algorithm AGMsDR(xo, T(-), L, K) [Nesterov et al. 2021]

1: vo = X0, AO =0.

2. for k=0,1,..., K—1do

3 yk=argmin {f(y):y = vi+ B0« — ), B €[0,1]}.
Xkr1 = T(yk)-

AN A

Vi1 = Vk — ak+1 VT (yk).
return xg.

Find ak+1 >0 from LaiJrl = A+ ag41- Set Ak+1 = A+ ag41-

This method works for any T(-) such that
1
F) = f(TO) = S IVEWIE Wy € Fo.

In our case, T(y) =y —n(y)VF(y), where 7(-) is one of the stepsize
strategies considered earlier.
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Efficiency Bounds

Theorem. To ensure that f(xx) — f* < € for any given € > 0, AGMsDR
needs at most the following number of gradient-oracle calls:

O(m (Lo + LEFO)R2)

where m is the complexity of finding y, at each iteration.

NB: This is much better than the previous best result for the method
from (Li et al. 2024): O((L{R?* + L FO - 1)\/%).
Two-stage acceleration procedure
@ Run GD to find xp such that Fy = f(xp) — f* < 531_%
1
@ Run AGMsDR from xp.

Efficiency: O(L3R? + my/LF%).
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Experiments



Experiments
We use the following test problem:

1
1 = — P
Xrgﬁ@{f(x) : p“X” }

The initial point xp is chosen such that ||xp|| = R with R = 10.
We choose )
p

Comparison between different methods:

Convergence

Convergence

Convergence

L
] 150 E) G 100 2
Number of iterations Number of iterations

(@)p=4 (b) p=6 (c)p=8
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Experiments — |l

Recall that L; > 0 can be arbitrary for the same problem.

GD with optimal stepsize for different choices of L;:

Convergence - Convergence Convergence
—= L,=1.0 . —= ;=10 100
1ot = L,=2.0 EARARN e =20
1\ O\ —a— [1=4.0 0
10° \ \
\ = 1,=80 o

10
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3 0 3 3
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o 10 o
1o 10 — o
- -,
ED T % I T T TR
Number of iterations
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Number of iterations
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X 260 300
Number of iterations
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Conclusions



Conclusions

@ We have seen that GD is a natural method for (Lo, L1)-smooth
functions, obtained by minimizing the upper bound on the objective.

@ The clipping stepsize is a simplification of the corresponding optimal
stepsize ensuring the same bound on the function progress.

@ In the convex case, we have obtained complexities of
O(LOTR2 + LiRIn %) and O(m LOTR2 + L2R?) for the basic and
accelerated methods, respectively.

Open questions: Acceleration of first stage? Removing line search?
Lower bounds? Alternative smoothness assumptions?

Paper (arXiv:2410.10800)

Optimizing (Lo, L1)-Smooth Functions by Gradient Methods
D. Vankov, A. Rodomanov, A. Nedich, L. Sankar, S. Stich

Thank you!
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