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Motivation



Classical Theory for Gradient Descent

Optimization problem: f ∗ := minx∈Rd f (x), where f is smooth.

Gradient Descent (GD):

xk+1 = xk − η∇f (xk), k ≥ 0.

The standard assumption for analyzing GD is that f is Lipschitz-smooth:

∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥, ∀x , y ∈ Rd ,

which is equivalent to the boundedness of the second derivative:

∥∇2f (x)∥ ≤ L, ∀x ∈ Rd .

Under this assumption, the theory suggests choosing the stepsize

η =
1

L

which ensures the good convergence rate of the method.
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Are All Smooth Functions Lipschitz-Smooth?

Many smooth functions arising in applications are not Lipschitz-smooth. . .

For example, f (x) = |x |p for p > 2 or f (x) = ex .

How do we solve optimization problems involving such functions?
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Relative Smoothness [Bauschke et al. 2017; Lu et al. 2018]

Instead of Lipschitz-smoothness, we can consider relative smoothness:

∇2f (x) ⪯ L∇2ρ(x), x ∈ Rd ,

where ρ is a certain convex “reference function”.

Then, we can apply the Bregman GD / Mirror Descent:

xk+1 = argmin
x∈Rd

{f (xk) + ⟨∇f (xk), x − xk⟩+ Lβρ(xk , x)},

where βρ(x , y) := ρ(y)− ρ(x)− ⟨∇ρ(x), y − x⟩ is the Bregman distance
generated by ρ.

Example: f (x) = 1
4∥Ax − b∥4 + 1

2∥Cx − d∥2 is smooth relative to
ρ(x) = 1

4∥x∥
4 + 1

2∥x∥
2.

This is a very powerful technique but requires fixing the reference
function ρ in advance.
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(L0, L1)-Smooth Functions [J. Zhang et al. 2020]

In this work, we concentrate instead on another interesting smoothness
assumption referred to as (L0, L1)-smoothness:

∥∇2f (x)∥ ≤ L0 + L1∥∇f (x)∥, ∀x ∈ Rd .

Original motivation: Empirical study of loss functions in Neural
Networks for Natural Language Processing (NLP) problems.

NB: f is L-smooth ⇐⇒ f is (L, 0)-smooth.

Basic example: Any polynomial f (x) =
∑d

i=0 aix
i (ai ∈ R) of

degree d ≥ 3 is (L0, L1)-smooth but not Lipschitz-smooth.

Indeed, f ′(x) =
∑d

i=1 iaix
i−1, f ′′(x) =

∑d
i=2 i(i − 1)aix

i−2. Therefore
|f ′′(x)|
|f ′(x)| → 0 as |x | → ∞, while |f ′′(x)| is bounded on any compact interval.
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Clipped GD

A popular algorithm that provably works for (L0, L1)-smooth functions is
the Clipped GD:

xk+1 = xk − ηk∇f (xk), ηk = min
{
η,

γ

∥∇f (xk)∥

}
,

where η = Θ( 1
L0
) and γ = Θ( 1

L1
).

[J. Zhang et al. 2020] showed that, to find an ϵ-stationary point

(∥∇f (x̄)∥ ≤ ϵ), Clipped GD needs at most O(L0F0
ϵ2

+
L21F0

L0
) gradient

computations, where F0 := f (x0)− f ∗.

[Koloskova et al. 2023] further improved it up to O(L0F0
ϵ2

+ L1F0
ϵ ).

CF: Standard GD for L-smooth functions has complexity of O(LF0
ϵ2

).
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Motivation for This Work

Further study of (L0, L1)-class: main inequalities and properties.

Why does Clipped GD work for this class? How “natural” is this
method and is there any good interpretation for it?

What is the efficiency of gradient methods when our problem is
additionally convex? Can we improve upon the previously known
algorithms/results?
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(L0, L1)-Smooth Functions



Basic Examples

Recall the definition: ∥∇2f (x)∥ ≤ L0 + L1∥∇f (x)∥.

Examples:

1 (exponent) f (x) = ex is (L0, L1)-smooth with L0 = 0 and L1 = 1.

2 (logistic function) f (x) = ln(1 + ex) is (L0, L1)-smooth with arbitrary
L1 ∈ [0, 1] and L0 =

1
4(1− L1)

2.

3 (power of Euclidean norm) f (x) = 1
p∥x∥

p, where p > 2, is

(L0, L1)-smooth with arbitrary L1 > 0 and L0 = (p−2
L1

)p−2.

NB: For the same function, the choice of (L0, L1) may not be unique.
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Calculus of (L0, L1)-Smooth Functions

In general, the class is not closed under summation or affine substitution
of the arguments. Nevertheless, the class is still closed under some
operations.

1 If fi is (L0,i , L1,i )-smooth for each 1 ≤ i ≤ n, then f (x) =
∑n

i=1 fi (xi ),
where x ≡ (x1, . . . , xn), is (L0, L1)-smooth with L0 = max1≤i≤n L0,i
and L1 = max1≤i≤n L1,i .

2 If f is (L0, L1)-smooth and g is L-smooth and M-Lipschitz, then
f + g is (L′0, L

′
1)-smooth with L′0 = L0 +ML1 + L and L′1 = L1.

3 If h(x) = f (⟨a, x⟩+ b) and f is (L0, L1)-smooth, then h is
(L′0, L

′
1)-smooth with L′0 = ∥a∥2L0 and L′1 = ∥a∥L1.
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Main Inequalities

Theorem. Function f is (L0, L1)-smooth iff any of the following
inequalities holds for any x , y ∈ Rd :

∥∇f (y)−∇f (x)∥ ≤ (L0 + L1∥∇f (x)∥)e
L1∥y−x∥ − 1

L1
,

|f (y)− f (x)− ⟨∇f (x), y − x⟩| ≤ (L0 + L1∥∇f (x)∥)ϕ(L1∥y − x∥)
L21

,

where ϕ(t) := et − t − 1.

CF: These bounds are tighter than those from (B. Zhang et al. 2020; Li
et al. 2024).
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Lower Bound for Convex Functions

Theorem. Let f be a convex (L0, L1)-smooth function. Then, for any
x , y ∈ Rd , we have

f (y) ≥ f (x)+⟨∇f (x), y−x⟩+ L0 + L1∥∇f (y)∥
L21

ϕ∗

(L1∥∇f (y)−∇f (x)∥
L0 + L1∥∇f (y)∥

)
,

where ϕ∗(γ) = (1 + γ) ln(1 + γ)− γ (≥ γ2

2+γ ) is conjugate to ϕ.

Corollary 1:

f (y) ≥ f (x)+⟨∇f (x), y−x⟩+ ∥∇f (y)−∇f (x)∥2

2(L0 + L1∥∇f (y)∥) + L1∥∇f (y)−∇f (x)∥
.

Corollary 2:

f (x)− f ∗ ≥ ∥∇f (x)∥2

2L0 + 3L1∥∇f (x)∥
.
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Gradient Descent (GD)



Minimizing Upper Bound

Natural idea: Minimize the upper bound on the objective:

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ (L0 + L1∥∇f (x)∥)ϕ(L1∥y − x∥)
L21

,

where ϕ(t) = et − t − 1.

The optimal point y∗ = T (x) is the result of the gradient step:

T (x) = x − r∗
∇f (x)

∥∇f (x)∥
, r∗ =

1

L1
ln
(
1 +

L1∥∇f (x)∥
L0 + L1∥∇f (x)∥

)
,

resulting in the following bound on improving the function value:

f (x)− f (T (x)) ≥ max
r≥0

{
∥∇f (x)∥r − L0 + L1∥∇f (x)∥

L21
ϕ(L1r)

}
=

L0 + L1∥∇f (x)∥
L21

ϕ∗

( L1∥∇f (x)∥
L0 + L1∥∇f (x)∥

)
.

Anton Rodomanov Optimizing (L0, L1)-Smooth Functions 3 December 2024 13 / 27



Optimal Stepsize

Thus, the point y∗ minimizing the upper bound on the objective is the
result of the gradient step

T (x) = x − η∗∇f (x),

where the optimal stepsize is given by

η∗ =
1

L1∥∇f (x)∥
ln

(
1 +

L1∥∇f (x)∥
L0 + L1∥∇f (x)∥

)
.

The corresponding progress in decreasing the objective is

f (x)− f (T (x)) ≥ L0 + L1∥∇f (x)∥
L21

ϕ∗

( L1∥∇f (x)∥
L0 + L1∥∇f (x)∥

)
=: ∆(x).
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Simplified Stepsize

The function ϕ∗ satisfies γ2

2+γ ≤ ϕ∗(γ) ≤ γ2

2 .

From this estimate, it follows that ∆(x) ∼ ∥∇f (x)∥2
L0+L1∥∇f (x)∥ . More precisely:

∥∇f (x)∥2

2L0 + 3L1∥∇f (x)∥
≤ ∆(x) ≤ ∥∇f (x)∥2

2(L0 + L1∥∇f (x)∥)
.

Thus, the gurantee for the optimal stepsize can be simplified:

f (x)− f (T (x)) ≥ ∥∇f (x)∥2

2L0 + 3L1∥∇f (x)∥
.

We can obtain the same guarantee by using the simplified stepsize

ηsi =
1

L0 +
3
2L1∥∇f (x)∥

.
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Clipping Stepsize

Note that our simplified stepsize is essentially the clipping stepsize:

ηsi ∼
1

L0 + L1∥∇f (x)∥
∼ 1

max{L0, L1∥∇f (x)∥}
= min

{ 1

L0
,

1

L1∥∇f (x)∥

}
.

For the clipping stepsize

ηcl = min
{ 1

2L0
,

1

3L1∥∇f (x)∥

}
,

we can show a similar bound on the function progress as before:

f (x)− f (T (x)) ≥ ∥∇f (x)∥2

2(2L0 + 3L1∥∇f (x)∥)
.
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Various Stepsize Choices: Summary

We have shown that the gradient step

T (x) = x − η(x)∇f (x)

is a natural operation minimizing the upper bound on the objective.

The following three stepsizes are equivalent (up to absolute constants) in
terms of the objective progress:

1 (Optimal stepsize) η∗(x) = 1
L1∥∇f (x)∥ ln(1 +

L1∥∇f (x)∥
L0+L1∥∇f (x)∥).

2 (Simplified stepsize) ηsi(x) =
1

L0+
3
2
L1∥∇f (x)∥ .

3 (Clipping stepsize) ηcl(x) = min{ 1
2L0
, 1
3L1∥∇f (x)∥}.

These stepsizes satisfy ηcl(x) ≤ ηsi(x) ≤ η∗(x) and all ensure that

f (x)− f (T (x)) ≥ ∥∇f (x)∥2

c(2L0 + 3L1∥∇f (x)∥)
,

where c = 1 for the first two choices and c = 2 for the third one.
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GD: Convergence to Stationary Point

Consider now GD

xk+1 = xk − η(xk)∇f (xk), k ≥ 0,

where η(·) is one of the stepsize formulas considered before.

Theorem. For any given ϵ > 0, to reach min0≤i≤k−1∥∇f (xi )∥ ≤ ϵ, it
suffices to make the following number of iterations:

k ≥ (2c)L0F0
ϵ2

+
(3c)L1F0

ϵ
,

where F0 = f (x0)− f ∗, c = 1 for the optimal and simplified stepsizes, and
c = 2 for the clipping stepsize.

CF: This coincides with the best-known rate for the clipped GD
from (Koloskova et al. 2023).
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Efficiency on Convex Functions

Consider the same method but now additionally assume that f is convex.

Theorem. Let F0 := f (x0)− f ∗. Then, f (xk)− f ∗ ≤ ϵ for any given
0 ≤ ϵ < F0 whenever

k ≥ (2c)
L0R

2

ϵ
+ (3c)L1R ln

F0
ϵ

=: k(ϵ),

where R := ∥x0 − x∗∥ and c ∈ {1, 2} depending on the stepsize strategy.
Furthermore, the distance ∥xk − x∗∥ decreases monotonically.

NB: In the worst case, F0 ≤ L0R2

2 exp(L1R) and

k(ϵ) ≤ c(2 + 3
e )

L0R2

ϵ + c(3 + 1
e )L

2
1R

2.

CF: The previous best-known result for the method from (Li et al. 2024)

was enjoying the much worse estimate of O( (L0+L1∥∇f (x0)∥)R2

ϵ ).
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Other Algorithms



Normalized Gradient Method
We can also consider the Normalized Gradient Method (NGM):

xk+1 = xk −
βk

∥∇f (xk)∥
∇f (xk), k ≥ 0.

Theorem. Consider NGM run for K iterations with constant coefficients:

βk =
R̂√
K
, 0 ≤ k ≤ K − 1.

Then, for any given ϵ > 0, we have min0≤k≤K f (xk)− f ∗ ≤ ϵ whenever

K + 1 ≥ max
{L0R̄

2

ϵ
,
4

9
L21R̄

2
}
,

where R̄ := R2

R̂
+ R̂ and R := ∥x0 − x∗∥.

NB: We can also use time-varying coefficients βk = R̂√
k+1

. The

complexity is the same up to an extra logarithmic factor.
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Gradient Method with Polyak Stepsize

Another interesting method is GM with Polyak Stepsize:

xk+1 = xk −
f (xk)− f ∗

∥∇f (xk)∥2
∇f (xk), k ≥ 0.

It also achieves the same complexity (up to absolute constants).
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Fast Gradient Method (FGM)



Main idea
1 In the region Q := {x : ∥∇f (x)∥ ≤ ∆}, the function f is essentially

standard L-smooth with L = L0 + L1∆.
2 If we could stay inside Q (defined e.g., by ∆ = ∥∇f (x0)∥), then by

running the standard FGM, we can expect the following complexity to

find an ϵ-solution: O(
√

LR2

ϵ ) = O(

√
(L0+L1∆)R2

ϵ ).

3 However, we cannot guarantee that FGM stays in Q.
4 But we can ensure that the iterates remain in the initial sublevel set,

F0 := {x : f (x) ≤ f (x0)} on which

ψ(∥∇f (x)∥) ≤ f (x)− f ∗ ≤ f (x0)− f ∗ := F0,

where ψ(γ) := γ2

2L0+3L1γ
. This means that, for any x ∈ F0,

∥∇f (x)∥ ≤ ψ−1(F0) =: ∆ ≤
√
2L0F0 + 3L1F0,

and so
L ≤ L0 + L1ψ

−1(F0) ≤ 2L0 +
7
2L

2
1F0.
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Monotone FGM

Algorithm AGMsDR(x0,T (·), L,K ) [Nesterov et al. 2021]

1: v0 = x0, A0 = 0.
2: for k = 0, 1, . . . ,K − 1 do
3: yk = argminy{f (y) : y = vk + β(xk − vk), β ∈ [0, 1]}.
4: xk+1 = T (yk).
5: Find ak+1 > 0 from La2k+1 = Ak + ak+1. Set Ak+1 = Ak + ak+1.
6: vk+1 = vk − ak+1∇f (yk).

return xK .

This method works for any T (·) such that

f (y)− f (T (y)) ≥ 1

2L
∥∇f (y)∥2, ∀y ∈ F0.

In our case, T (y) = y − η(y)∇f (y), where η(·) is one of the stepsize
strategies considered earlier.
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Efficiency Bounds

Theorem. To ensure that f (xk)− f ∗ ≤ ϵ for any given ϵ > 0, AGMsDR
needs at most the following number of gradient-oracle calls:

O
(
m

√
(L0 + L21F0)R

2

ϵ

)
where m is the complexity of finding yk at each iteration.

NB: This is much better than the previous best result for the method

from (Li et al. 2024): O
(
(L21R

2 +
L21F0

L0
+ 1)

√
L0R2+F0

ϵ

)
.

Two-stage acceleration procedure

1 Run GD to find x0 such that F0 ≡ f (x0)− f ∗ ≤ L0
5L21

.

2 Run AGMsDR from x0.

Efficiency: O(L21R
2 +m

√
L0R2

ϵ ).
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Experiments



Experiments
We use the following test problem:

min
x∈Rd

{
f (x) :=

1

p
∥x∥p

}
.

The initial point x0 is chosen such that ∥x0∥ = R with R = 10.
We choose

L1 = 1, L0 =

(
p − 2

L1

)p−2

.

Comparison between different methods:
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Experiments – II

Recall that L1 > 0 can be arbitrary for the same problem.

GD with optimal stepsize for different choices of L1:
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Conclusions



Conclusions
We have seen that GD is a natural method for (L0, L1)-smooth
functions, obtained by minimizing the upper bound on the objective.

The clipping stepsize is a simplification of the corresponding optimal
stepsize ensuring the same bound on the function progress.

In the convex case, we have obtained complexities of

O(L0R
2

ϵ + L1R ln F0
ϵ ) and O(m

√
L0R2

ϵ + L21R
2) for the basic and

accelerated methods, respectively.

Open questions: Acceleration of first stage? Removing line search?
Lower bounds? Alternative smoothness assumptions?

Paper (arXiv:2410.10800)

Optimizing (L0, L1)-Smooth Functions by Gradient Methods
D. Vankov, A. Rodomanov, A. Nedich, L. Sankar, S. Stich
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