Optimizing (L_0, L_1) -Smooth Functions by Gradient Methods

Anton Rodomanov (CISPA)

(joint work with D. Vankov, A. Nedich, L. Sankar, and S. Stich)

5 November 2024 Research Seminar at Université Grenoble Alpes Grenoble, France

Outline

- Motivation
- (L_0, L_1) -Smooth Functions
- Gradient Method
- Other Algorithms
- 5 Experiments
- 6 Conclusions

Motivation

Classical Theory for Gradient Method

Optimization problem: $f^* := \min_{x \in \mathbb{R}^d} f(x)$, where f is smooth.

Gradient Method (GM):

$$x_{k+1} = x_k - \eta \nabla f(x_k), \qquad k \geq 0.$$

The standard assumption for analyzing GM is that f is Lipschitz-smooth:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d,$$

which is equivalent to the boundedness of the second derivative:

$$||\nabla^2 f(x)|| \le L,$$
 $\forall x \in \mathbb{R}^d.$

Under this assumption, the theory suggests choosing the stepsize

$$\eta = \frac{1}{L}$$

which ensures the good convergence rate of the method.

Are All Smooth Functions Lipschitz-Smooth?

No, many smooth functions arising in applications are not Lipschitz-smooth...

For example,
$$f(x) = |x|^p$$
 for $p > 2$ or $f(x) = e^x$.

How do we solve optimization problems involving such functions?

Relative Smoothness [Bauschke et al. 2017; Lu et al. 2018]

Instead of Lipschitz-smoothness, we can consider relative smoothness:

$$abla^2 f(x) \leq L \nabla^2 \rho(x), \qquad x \in \mathbb{R}^d,$$

where ρ is a certain convex "reference function".

Then, we can apply the Bregman GM / Mirror Descent:

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + L\beta_{\rho}(x_k, x) \},$$

where $\beta_{\rho}(x,y) := \rho(y) - \rho(x) - \langle \nabla \rho(x), y - x \rangle$ is the Bregman distance generated by ρ .

Example: $f(x) = \frac{1}{4} ||Ax - b||^4 + \frac{1}{2} ||Cx - d||^2$ is smooth relative to $\rho(x) = \frac{1}{4} ||x||^4 + \frac{1}{2} ||x||^2$.

This is a very powerful technique but requires fixing the reference function ρ in advance.

(L_0, L_1) -Smooth Functions [Zhang et al. 2020]

In this work, we concentrate instead on another interesting smoothness assumption referred to as (L_0, L_1) -smoothness:

$$||\nabla^2 f(x)|| \le L_0 + L_1 ||\nabla f(x)||,$$
 $\forall x \in \mathbb{R}^d.$

Original motivation: Empirical study of loss functions in Neural Networks for Natural Language Processing (NLP) problems.

NB: f is L-smooth $\iff f$ is (L,0)-smooth.

Basic example: Any polynomial $f(x) = \sum_{i=0}^{d} a_i x^i$ $(a_i \in \mathbb{R})$ of degree $d \geq 3$ is (L_0, L_1) -smooth but not Lipschitz-smooth.

Indeed, $f'(x) = \sum_{i=1}^d ia_i x^{i-1}$, $f''(x) = \sum_{i=2}^d i(i-1)a_i x^{i-2}$. Therefore $\frac{|f''(x)|}{|f'(x)|} \to 0$ as $|x| \to \infty$, while |f''(x)| is bounded on any compact interval.

Clipped Gradient Method

A popular algorithm that provably works for (L_0, L_1) -smooth functions is the Clipped GM:

$$x_{k+1} = x_k - \eta_k \nabla f(x_k), \qquad \eta_k = \min \left\{ \eta, \frac{\gamma}{\|\nabla f(x_k)\|} \right\},$$

where $\eta = \Theta(\frac{1}{L_0})$ and $\gamma = \Theta(\frac{1}{L_1})$.

- [Zhang et al. 2020] showed that, to find an ϵ -stationary point $(\|\nabla f(\bar{x})\| \le \epsilon)$, Clipped GM needs at most $O(\frac{L_0F_0}{\epsilon^2} + \frac{L_1^2F_0}{L_0})$ gradient computations, where $F_0 := f(x_0) f^*$.
- [Koloskova et al. 2023] further improved it up to $O(\frac{L_0F_0}{\epsilon^2} + \frac{L_1F_0}{\epsilon})$.

NB: Standard GM for *L*-smooth functions has complexity of $O(\frac{LF_0}{\epsilon^2})$.

Motivation for This Work

- Further study of (L_0, L_1) -class: main inequalities and properties.
- Why does Clipped GM work for this class? How "natural" is this method and is there any good interpretation for it?
- What is the efficiency of gradient methods when our problem is additionally convex?

 (L_0, L_1) -Smooth Functions

Basic Examples

Recall the definition: $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$.

Examples:

- (exponent) $f(x) = e^x$ is (L_0, L_1) -smooth with $L_0 = 0$ and $L_1 = 1$.
- ② (logistic function) $f(x) = \ln(1 + e^x)$ is (L_0, L_1) -smooth with arbitrary $L_1 \in [0, 1]$ and $L_0 = \frac{1}{4}(1 L_1)^2$.
- **(**power of Euclidean norm) $f(x) = \frac{1}{p} ||x||^p$, where p > 2, is (L_0, L_1) -smooth with arbitrary $L_1 > 0$ and $L_0 = (\frac{p-2}{L_1})^{p-2}$.

NB: For the same function, the choice of (L_0, L_1) may not be unique.

Calculus of (L_0, L_1) -Smooth Functions

In general, the class is not closed under summation or affine substitution of the arguments. Nevertheless, the class is still closed under some operations.

- If f_i is $(L_{0,i}, L_{1,i})$ -smooth for each $1 \le i \le n$, then $f(x) = \sum_{i=1}^n f_i(x_i)$, where $x \equiv (x_1, \dots, x_n)$, is (L_0, L_1) -smooth with $L_0 = \max_{1 \le i \le n} L_{0,i}$ and $L_1 = \max_{1 \le i \le n} L_{1,i}$.
- ② If f is (L_0, L_1) -smooth and g is L-smooth and M-Lipschitz, then f+g is (L'_0, L'_1) -smooth with $L'_0 = L_0 + ML_1 + L$ and $L'_1 = L_1$.
- If $h(x) = f(\langle a, x \rangle + b)$ and f is (L_0, L_1) -smooth, then h is (L'_0, L'_1) -smooth with $L'_0 = ||a||^2 L_0$ and $L'_1 = ||a|| L_1$.

Main Inequalities

Theorem. Function f is (L_0, L_1) -smooth iff any of the following inequalities holds for any $x, y \in \mathbb{R}^d$:

$$\|\nabla f(y) - \nabla f(x)\| \le (L_0 + L_1 \|\nabla f(x)\|) \frac{e^{L_1 \|y - x\|} - 1}{L_1},$$

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le (L_0 + L_1 \|\nabla f(x)\|) \frac{\phi(L_1 \|y - x\|)}{L_1^2},$$

where $\phi(t) := e^t - t - 1$.

Lower Bound for Convex Functions

Theorem. Let f be a convex (L_0, L_1) -smooth function. Then, for any $x, y \in \mathbb{R}^d$, we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_0 + L_1 \| \nabla f(y) \|}{L_1^2} \phi_* \Big(\frac{L_1 \| \nabla f(y) - \nabla f(x) \|}{L_0 + L_1 \| \nabla f(y) \|} \Big),$$

where $\phi_*(\gamma) = (1+\gamma)\ln(1+\gamma) - \gamma \ (\geq \frac{\gamma^2}{2+\gamma})$ is conjugate to ϕ .

Corollary:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\|\nabla f(y) - \nabla f(x)\|^2}{2(L_0 + L_1 \|\nabla f(y)\|) + L_1 \|\nabla f(y) - \nabla f(x)\|}.$$

Gradient Method

Minimizing Upper Bound

Natural idea: Minimize the upper bound on the objective:

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + (L_0 + L_1 || \nabla f(x) ||) \frac{\phi(L_1 || y - x ||)}{L_1^2},$$

where $\phi(t) = e^t - t - 1$.

The optimal point $y^* = T(x)$ is the result of the gradient step:

$$T(x) = x - r^* \frac{\nabla f(x)}{\|\nabla f(x)\|}, \qquad r^* = \frac{1}{L_1} \ln \Big(1 + \frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \Big),$$

resulting in the following bound on improving the function value:

$$f(x) - f(T(x)) \ge \max_{r \ge 0} \left\{ \|\nabla f(x)\|_r - \frac{L_0 + L_1 \|\nabla f(x)\|}{L_1^2} \phi(L_1 r) \right\}$$
$$= \frac{L_0 + L_1 \|\nabla f(x)\|}{L_1^2} \phi_* \left(\frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \right).$$

Optimal Stepsize

Thus, the point y^* minimizing the upper bound on the objective is the result of the gradient step

$$T(x) = x - \eta^* \nabla f(x),$$

where the optimal stepsize is given by

$$\eta^* = \frac{1}{L_1 \|\nabla f(x)\|} \ln \left(1 + \frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \right).$$

The corresponding progress in decreasing the objective is

$$f(x) - f(T(x)) \ge \frac{L_0 + L_1 \|\nabla f(x)\|}{L_1^2} \phi_* \Big(\frac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|} \Big) =: \Delta(x).$$

Simplified Stepsize

The function ϕ_* satisfies $\frac{\gamma^2}{2+\gamma} \le \phi_*(\gamma) \le \frac{\gamma^2}{2}$.

From this estimate, it follows that $\Delta(x) \sim \frac{\|\nabla f(x)\|^2}{L_0 + L_1 \|\nabla f(x)\|}$. More precisely:

$$\frac{\|\nabla f(x)\|^2}{2L_0 + 3L_1\|\nabla f(x)\|} \leq \Delta(x) \leq \frac{\|\nabla f(x)\|^2}{2(L_0 + L_1\|\nabla f(x)\|)}.$$

Thus, the gurantee for the optimal stepsize can be simplified:

$$f(x) - f(T(x)) \ge \frac{\|\nabla f(x)\|^2}{2L_0 + 3L_1 \|\nabla f(x)\|}.$$
 (*)

We can obtain the same guarantee by using the simplified stepsize

$$\eta = \frac{1}{L_0 + \frac{3}{2}L_1\|\nabla f(x)\|}.$$

With this stepsize, we still have the same guarantee (*).

Clipping Stepsize

Note that our simplified stepsize is essentially the clipping stepsize:

$$\eta \sim \frac{1}{L_0 + L_1 \|\nabla f(x)\|} \sim \frac{1}{\max\{L_0, L_1 \|\nabla f(x)\|\}} = \min\Bigl\{\frac{1}{L_0}, \frac{1}{L_1 \|\nabla f(x)\|}\Bigr\}.$$

For the clipping stepsize

$$\eta_{\text{cl}} = \min \left\{ \frac{1}{2L_0}, \frac{1}{3L_1 \|\nabla f(x)\|} \right\},$$

we can show a similar bound on the function progress as before:

$$f(x) - f(T(x)) \ge \frac{\|\nabla f(x)\|^2}{2(2L_0 + 3L_1\|\nabla f(x)\|)}.$$

Various Stepsize Choices: Summary

We have shown that the gradient step

$$T(x) = x - \eta(x)\nabla f(x)$$

is a natural operation minimizing the upper bound on the objective.

The following three stepsizes are equivalent (up to absolute constants) in terms of the objective progress:

- $\bullet \ \ (\text{Optimal stepsize}) \ \ \eta^*(x) = \tfrac{1}{L_1 \|\nabla f(x)\|} \ln(1 + \tfrac{L_1 \|\nabla f(x)\|}{L_0 + L_1 \|\nabla f(x)\|}).$
- ② (Simplified stepsize) $\eta(x) = \frac{1}{L_0 + \frac{3}{2}L_1\|\nabla f(x)\|}$.

They all ensure that

$$f(x) - f(T(x)) \ge \frac{\|\nabla f(x)\|^2}{c(2L_0 + 3L_1\|\nabla f(x)\|)},$$

where c=1 for the first two choices and c=2 for the third one.

GM: Convergence to Stationary Point

Consider now the gradient method:

$$x_{k+1} = x_k - \eta(x_k) \nabla f(x_k), \qquad k \ge 0,$$

where $\eta(\cdot)$ is one of the stepsize formulas considered before.

Theorem. For any given $\epsilon > 0$, to reach $\min_{0 \le i \le k-1} ||\nabla f(x_i)|| \le \epsilon$, it suffices to make the following number of iterations:

$$k \geq \frac{(2c)L_0F_0}{\epsilon^2} + \frac{(3c)L_1F_0}{\epsilon},$$

where $F_0 = f(x_0) - f^*$, c = 1 for the optimal and simplified stepsizes, and c = 2 for the clipping stepsize.

Convergence to Stationary Point: Proof

According to the main inequality, we have

$$f_k - f_{k+1} \ge \psi(g_k), \qquad \psi(g) \coloneqq \frac{g^2}{c(2L_0 + 3L_1g)},$$

where $f_k = f(x_k) - f^*$ and $g_k = \|\nabla f(x_k)\|$. Note that ψ is increasing.

Summing up, we get

$$F_0 \ge f_0 - f_k \ge \sum_{i=0}^{k-1} \psi(g_k) \ge k \psi(g_k^*),$$

where $g_k^* := \min_{0 \le i \le k-1} g_i$.

Hence,

$$g_k^* \le \psi^{-1} \Big(\frac{F_0}{k} \Big) \le \epsilon$$

whenever

$$k \geq \frac{F_0}{\psi(\epsilon)} \equiv F_0 \frac{c(2L_0 + 3L_1\epsilon)}{\epsilon^2} \equiv \frac{(2c)L_0F_0}{\epsilon^2} + \frac{(3c)L_1F_0}{\epsilon}.$$

Efficiency on Convex Functions

Consider the same method but now additionally assume that f is convex.

Theorem. For any given $\epsilon > 0$, we have $f(x_k) - f^* \le \epsilon$ whenever

$$k \ge O\left(\frac{L_0 R^2}{\epsilon} + L_1^2 R^2\right),\,$$

where $R := \|x_0 - x^*\|$ is the distance from the initial point to the solution x^* of our problem. Furthermore, the distance $\|x_k - x^*\|$ decreases monotonically.

Efficiency on Convex Functions: Overview of Proof

We consider the method with the simplified stepsize:

$$x_{k+1} = x_k - \eta_k \nabla f(x_k), \qquad \eta_k = \frac{1}{L_0 + \frac{3}{2}L_1g_k},$$

where $g_k := \|\nabla f(x_k)\|$. The proof for the other two stepsizes is similar. Denote $r_k := \|x_k - x^*\|$. Then,

$$r_{k+1}^2 = r_k^2 - 2\eta_k \beta_k + \eta_k^2 g_k^2,$$

where $\beta_k := \langle \nabla f(x_k), x_k - x^* \rangle \ (\geq f(x_k) - f^*).$

According to the lower bound (presented before),

$$\beta_k \geq \frac{g_k^2}{2L_0 + 3L_1g_k} + \frac{g_k^2}{2L_0 + L_1g_k} \geq \frac{g_k^2}{L_0 + \frac{3}{2}L_1g_k} \equiv \xi(g_k) = \eta_k g_k^2.$$

Note that ξ is increasing. Hence,

$$r_k^2 - r_{k+1}^2 \equiv \eta_k (2\beta_k - \eta_k g_k^2) \ge \eta_k \beta_k = \frac{\beta_k \xi(g_k)}{g_k^2} \ge \frac{\beta_k^2}{[\xi^{-1}(\beta_k)]^2}.$$

Efficiency on Convex Functions: Overview of Proof - II

Summing up, we get

$$R^{2} \geq r_{0}^{2} - r_{k}^{2} \geq \sum_{i=0}^{k-1} \frac{\beta_{i}^{2}}{[\xi^{-1}(\beta_{i})]^{2}} \geq k \frac{(\beta_{k}^{*})^{2}}{[\xi^{-1}(\beta_{k}^{*})]^{2}},$$

where $\beta_k^* := \min_{0 \le i \le k-1} \beta_i$.

Hence,

$$\xi^{-1}(\beta_k^*) \ge \frac{\sqrt{k}}{R} \beta_k^*.$$

Applying ξ on both sides, we get

$$\beta_k^* \ge \xi \left(\frac{\sqrt{k}}{R} \beta_k^* \right) \equiv \frac{\left(\frac{\sqrt{k}}{R} \beta_k^* \right)^2}{L_0 + \frac{3}{2} L_1 \frac{\sqrt{k}}{R} \beta_k^*} \equiv \frac{(\beta_k^*)^2}{\frac{L_0 R^2}{k} + \frac{3}{2} \frac{L_1 R}{\sqrt{k}} \beta_k^*}.$$

Thus,

$$\beta_k^* \le \frac{L_0 R^2}{k(1 - \frac{3}{2} \frac{L_1 R}{\sqrt{L}})} \le \epsilon$$

whenever $\frac{3L_1R}{\sqrt{k}} \leq 1$ and $\frac{2L_0R^2}{k} \leq \epsilon$. Thus, $k \geq \max\{\frac{2L_0R^2}{\epsilon}, 9L_1^2R^2\}$.

Other Algorithms

Normalized Gradient Method

We can also consider the Normalized Gradient Method (NGM):

$$x_{k+1} = x_k - \frac{\beta_k}{\|\nabla f(x_k)\|} \nabla f(x_k), \qquad k \geq 0.$$

Theorem. Consider NGM run for K iterations with constant coefficients:

$$\beta_k = \frac{\hat{R}}{\sqrt{K}}, \qquad 0 \le k \le K - 1.$$

Then, for any given $\epsilon > 0$, we have $\min_{0 \le k \le K} f(x_k) - f^* \le \epsilon$ whenever

$$K+1 \geq \max\Bigl\{\frac{L_0\bar{R}^2}{\epsilon}, \frac{4}{9}L_1^2\bar{R}^2\Bigr\},$$

where $\bar{R}:=\frac{R^2}{\hat{R}}+\hat{R}$ and $R:=\|x_0-x^*\|.$

NB: We can also use time-varying coefficients $\beta_k = \frac{R}{\sqrt{k+1}}$. The complexity is the same up to an extra logarithmic factor.

Gradient Method with Polyak Stepsize

Another interesting method is GM with Polyak Stepsize:

$$x_{k+1} = x_k - \frac{f(x_k) - f^*}{\|\nabla f(x_k)\|^2} \nabla f(x_k), \qquad k \ge 0.$$

It also achieves the same complexity (up to absolute constants).

Acceleration

We also propose an acceleration procedure with the complexity of

$$O\bigg(m\sqrt{\frac{L_0R^2}{\epsilon}}+L_1^2R^2\bigg),$$

where m is the complexity of "line search".

Procedure:

- **1** Run GM to find x_0 such that $f(x_0) f^* \leq \frac{L_0}{5L_1^2}$.
- 2 Run special monotone version of FGM from x_0 .

Main idea: On the sublevel set $x \in \mathcal{F}_0 := \{x : f(x) \le f(x_0)\}$, the function f is essentially standard $2L_0$ -smooth:

$$\|\nabla f(x)\| \le \frac{L_0}{L_1} \implies \|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\| \le 2L_0.$$

Experiments

Experiments

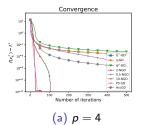
We use the following test problem:

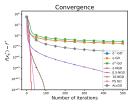
$$\min_{x\in\mathbb{R}^d}\Big\{f(x):=\frac{1}{p}\|x\|^p\Big\}.$$

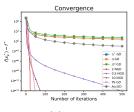
The initial point x_0 is chosen such that $||x_0|| = R$ with R = 10. We choose

$$L_1 = 1,$$
 $L_0 = \left(\frac{p-2}{L_1}\right)^{p-2}.$

Comparison between different methods:







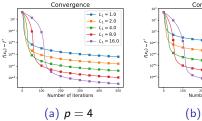
(b)
$$p = 6$$

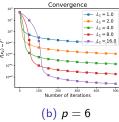
(c)
$$p = 8$$

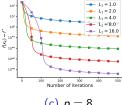
Experiments – II

Recall that $L_1 > 0$ can be arbitrary for the same problem.

GM with optimal stepsize for different choices of L_1 :







Convergence

(c)
$$p = 8$$

Conclusions

- We have seen that GM is a natural method for (L_0, L_1) -smooth functions, obtained by minimizing the upper bound on the objective.
- The clipping stepsize is a simplification of the corresponding optimal stepsize ensuring the same bound on the function progress.
- In the convex case, we have obtained complexities of $O(\frac{L_0R^2}{\epsilon} + L_1^2R^2)$ and $O(m\sqrt{\frac{L_0R^2}{\epsilon}+L_1^2R^2})$ for the basic and accelerated method, respectively.

Open questions:

- Lower bounds?
- Alternative smoothness assumptions?

Paper (arXiv:2410.10800)

Optimizing (L_0, L_1) -Smooth Functions by Gradient Methods D. Vankov, A. Rodomanov, A. Nedich, L. Sankar, S. Stich

References I

- H. H. Bauschke, J. Bolte, and M. Teboulle. A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications. Mathematics of Operations Research, 42(2):330–348, 2017.
- A. Koloskova, H. Hendrikx, and S. U. Stich. Revisiting Gradient Clipping: Stochastic Bias and Tight Convergence Guarantees. In International Conference on Machine Learning, pages 17343–17363. PMLR, 2023.
- H. Lu, R. M. Freund, and Y. Nesterov. Relatively Smooth Convex Optimization by First-Order Methods, and Applications. **SIAM Journal on Optimization**, 28(1):333–354, 2018.
- J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why Gradient Clipping Accelerates Training: A Theoretical Justification for Adaptivity. In 8th International Conference on Learning Representations, 2020.