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Motivation



Classical Theory for Gradient Method

Optimization problem: f* := min,cra f(x), where f is smooth.

Gradient Method (GM):

Xk+1 = Xk — HVf(Xk),

k> 0.

The standard assumption for analyzing GM is that f is Lipschitz-smooth:

IVF(x) = V)l < Llx -y

I, Vx,y € Rd,

which is equivalent to the boundedness of the second derivative:

IV ()]l < L,

Vx € RY.

Under this assumption, the theory suggests choosing the stepsize

77:2

which ensures the good convergence rate of the method.
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Are All Smooth Functions Lipschitz-Smooth?

No, many smooth functions arising in applications are not
Lipschitz-smooth. ..

For example, f(x) = |x|P for p > 2 or f(x) = e*.

How do we solve optimization problems involving such functions?
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Relative Smoothness [Bauschke et al. 2017; Lu et al. 2018]

Instead of Lipschitz-smoothness, we can consider relative smoothness:

V2f(x) 2 LV?p(x),|  x€RY,

where p is a certain convex “reference function”.
Then, we can apply the Bregman GM / Mirror Descent:

Xkl = argmdin{f(xk) + (VF(xk), x — xk) + LBp(xk, x)},
x€R

where B,(x,y) = p(y) — p(x) — (Vp(x),y — x) is the Bregman distance
generated by p.

Example: f(x) = Z|[Ax — b||* + 3|/ Cx — d||? is smooth relative to
p(x) = gllxl* + ZlxI12.

This is a very powerful technique but requires fixing the reference
function p in advance.
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(Lo, L1)-Smooth Functions [Zhang et al. 2020]

In this work, we concentrate instead on another interesting smoothness
assumption referred to as (Lo, L1)-smoothness:

V2 (x)|| < Lo + L1 || VF(x)], Vx € RY.

Original motivation: Empirical study of loss functions in Neural
Networks for Natural Language Processing (NLP) problems.

NB: f is L-smooth <= f is (L,0)-smooth.

Basic example: Any polynomial f(x) = Z:'j:o aix' (aj € R) of
degree d > 3 is (Lg, L1)-smooth but not Lipschitz-smooth.
Indeed, f/(x) = 29, iaix=1, £7(x) = 329, i(i — 1)aix’~2. Therefore

||';,(:))|| — 0 as |x| — oo, while |f”(x)| is bounded on any compact interval.
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Clipped Gradient Method

A popular algorithm that provably works for (Lo, L1)-smooth functions is
the Clipped GM:

Xt == VT (). = min{n o

where n = @(L%) and v = @(L%)

@ [Zhang et al. 2020] showed that, to find an e-stationary point

VF(X)| <€), Clipped GM needs at most O(efe + Lh gradient
€ Lo
computations, where Fy = f(xp) — f*.

@ [Koloskova et al. 2023] further improved it up to O(% + @)

NB: Standard GM for L-smooth functions has complexity of O( LFO)
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Motivation for This Work

e Further study of (Lo, L1)-class: main inequalities and properties.

@ Why does Clipped GM work for this class? How “natural” is this
method and is there any good interpretation for it?

@ What is the efficiency of gradient methods when our problem is
additionally convex?
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(Lo, L1)-Smooth Functions



Basic Examples

Recall the definition: ||V2f(x)|| < Lo + L1||VF(x)||.

Examples:

Q (exponent) f(x) = e~ is (Lo, L1)-smooth with Lo =0 and L; = 1.

@ (logistic function) f(x) = In(1 + €*) is (Lo, L1)-smooth with arbitrary
L, e [O, 1] and Lo = %(1 — L1)2.

@ (power of Euclidean norm) f(x) = %||x||”, where p > 2, is
(Lo, L1)-smooth with arbitrary L; > 0 and Lo = (PT—12)p—2_

NB: For the same function, the choice of (Lo, L1) may not be unique.
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Calculus of (Lo, L1)-Smooth Functions

In general, the class is not closed under summation or affine substitution
of the arguments. Nevertheless, the class is still closed under some
operations.

@ If fiis (Lo i, L1,;)-smooth for each 1 < i < n, then f(x) = > 7, fi(x;),
where x = (x1,...,Xn), is (Lo, L1)-smooth with Lo = maxi<j<, Lo
and L1 = MaXi<i<n LL,'.

@ If fis (Lo, L1)-smooth and g is L-smooth and M-Lipschitz, then
f + g is (Ly, Ly)-smooth with L = Lo+ MLy + L and L} = L;.

@ If h(x) =f((a,x) + b) and f is (Lo, L1)-smooth, then h is
(Lg, L})-smooth with L} = ||a[|?Lo and L} = ||a||L;.
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Main Inequalities

Theorem. Function f is (Lo, L1)-smooth iff any of the following
inequalities holds for any x,y € RY:

elally=xIl _ 1

IVF(y) = VI < (Lo + LIIVACIIN) ——F—

[F(y) = F(x) = (VF(x),y = )| < (Lo + La]| VF(x )H)WL

where ¢(t) = et —t — 1.

)

Y
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Lower Bound for Convex Functions

Theorem. Let f be a convex (Lo, L1)-smooth function. Then, for any
x,y € RY, we have

Lo+ LillVEW)I , (LallVE(y) = VI
f(y) > f(x)+(VF(x),y—x)+ I ( Lo+ Li[IVE(y) )

2 .. :
where ¢.(y) = (1 +7)In(1+7) =7 (= 25) is conjugate to ¢.

Corollary:

IVF(y) = VF(x)I?

fly) > f(x)+<Vf(X),y—X>+2(LO + L|[VE(Y)|) + Li||[VF(y) = VF(X)|
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Gradient Method



Minimizing Upper Bound

Natural idea: Minimize the upper bound on the objective:

F(y) < F()+ (900 y =)+ (Lo + L PAGD 2L,

where ¢(t) = et —t — 1.

The optimal point y* = T(x) is the result of the gradient step:

B 71 N SNV P\ 200
T0) == GG Lt L L)

resulting in the following bound on improving the function value:

Lo+ Li||VF(x)||
1) = F(T0)) 2 max{ [ 970l = === (lan) }

_ Lo+ L[VI(X)] ( L[|V £ (x)] >
L2 Lo+ Li|VF(X)|/
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Optimal Stepsize

Thus, the point y* minimizing the upper bound on the objective is the
result of the gradient step

T(x) = x =n"Vf(x),

where the optimal stepsize is given by

*

L1||Vf(x
. IV

1
LAl (1 e L1HVf(X)H>'

The corresponding progress in decreasing the objective is

Lo+ L1||VF(x)| L[|Vl _.
Fx) = H(T(x) 2 12 o(ms wrean) = A0
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Simplified Stepsize
The function ¢, satisfies % < du() < 772

2
From this estimate, it follows that A(x) ~ %. More precisely:

IV ()12
2L + 3L, [[VE(x)||

IV ()|
< A(x) < 2(Lo + La[[VE(I)

Thus, the gurantee for the optimal stepsize can be simplified:

IVl .
109 =170 2 3L 3nivcal )

We can obtain the same guarantee by using the simplified stepsize

1
Lo+ 3L VX

Ui

With this stepsize, we still have the same guarantee (*).
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Clipping Stepsize

Note that our simplified stepsize is essentially the clipping stepsize:

1 1 o n{ 1 1 }
~ i
Lo+ Li||VE(x)  max{Lo, L1[[VF(x)|} Lo’ L[VFx)]

7’]N

For the clipping stepsize

min{ 513w
el = MM o1 3L V(X))

we can show a similar bound on the function progress as before:

V()12
~ 2(2Lo + 3L VF())

fF(x) = f(T(x)) =
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Various Stepsize Choices: Summary

We have shown that the gradient step

T(x) =x = n(x)Vf(x)
is a natural operation minimizing the upper bound on the objective.

The following three stepsizes are equivalent (up to absolute constants) in
terms of the objective progress:

Q@ (Optimal stepsize) n*(x) =
@ (Simplified stepsize) n(x) =

LA
L1\|Vf(x 1In(t+ Eeran)-

Lo+§L1HVf(X)H'
. . . . 1 1
© (Clipping stepsize) ne(x) = min{5, W}

They all ensure that

IVFCI2

P00 = 10N 2 oty 3 vty

where ¢ = 1 for the first two choices and ¢ = 2 for the third one.
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GM: Convergence to Stationary Point

Consider now the gradient method:

Xk+1 = Xk — n(Xk)Vf(Xk), k > 0

Y

where 7(-) is one of the stepsize formulas considered before.

Theorem. For any given € > 0, to reach ming<j<x—1||Vf(x;)|| <, it
suffices to make the following number of iterations:

k >

(2C)LOFo (3C)L1Fo
2 + )
€ €

where Fy = f(xp) — f*, ¢ = 1 for the optimal and simplified stepsizes, and

c = 2 for the clipping stepsize.
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Convergence to Stationary Point: Proof

According to the main inequality, we have

2
g
fo — f1 > _=——
k= fier = v(gk),  (g) @l +30g)
where f, = f(xx) — f* and gx = ||V f(xk)||. Note that ¢ is increasing.

Summing up, we get

=~
I
-

Fo=fo—fi= ) (gk) = ki(gk),

where g/ = ming<i<x—1 &i-

Hence, -
8k < Pt (70> <e
whenever
Kk > Fo = F c(2Lo + 3Lye) _ (2¢)LoFo n (3C)L1F0.
¢(€) 62 62 €
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Efficiency on Convex Functions

Consider the same method but now additionally assume that f is convex.

Theorem. For any given € > 0, we have f(xx) — f* < e whenever

LoR?
€

kzo( +@W}

where R = ||xo — x*|| is the distance from the initial point to the

solution x* of our problem. Furthermore, the distance ||xx — x*|| decreases
monotonically.

v
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Efficiency on Convex Functions: Overview of Proof
We consider the method with the simplified stepsize:

1
Xep1 =Xk — V() k=5
Lo+ 3L1gx
where gy == ||V (xk)||. The proof for the other two stepsizes is similar.

Denote rx == ||xx — x*||. Then,

r13+1 = 17 = 20iBk + Mgk,
where Bk = (VF(xk), xxk — x*) (= f(xx) — f*).
According to the lower bound (presented before),
8 & . &
+3Ligk  2Lo+ Ligk ~ Lo+ 3Ligk

Note that £ is increasing.
Hence,

> = = 2.
B > 2L, £(gk) = nkgk

2
e — rivr = (2B — nigk) = B = ﬁkgg(zgk) > [51[(32;()]2'
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Efficiency on Convex Functions: Overview of Proof — Il
Summing up, we get
k—

) 8 %
S 2; 1R - KEER

where 3} = ming<j<k—1 ;.

Hence, y
— * k *
B = ?ﬁk
Applying £ on both sides, we get
o> g(g ) = CRB  _ (BP
- — - 2
ROV Lerdlegs T30
Thus, )
8 < LR <
k(11— 57)

2 2
whenever % <1 and %’ki <e. Thus, k> max{é’ei,9L%R2}.
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Other Algorithms



Normalized Gradient Method
We can also consider the Normalized Gradient Method (NGM):

Xk+1 = Xk — ﬂVf(Xk), k 2 0.

Theorem. Consider NGM run for K iterations with constant coefficients:

R
Bk_\/_ﬁa

Then, for any given € > 0, we have ming<x<x f(xx) — f* < € whenever

0<k<K-1

LoR% 4 -
K-l-lZmax{ 0 ,§L§R2},
€

where R = %2 + R and R =[x — x*|.

. . . .« . _ R
NB: We_ ca_n also use time-varying coefﬁaehts ﬁ.k = i The
complexity is the same up to an extra logarithmic factor.
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Gradient Method with Polyak Stepsize

Another interesting method is GM with Polyak Stepsize:

f(Xk) — f*

— —HVf(Xk)sz’((Xk)’ k > 0.

Xk+1 = Xk

It also achieves the same complexity (up to absolute constants).
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Acceleration

We also propose an acceleration procedure with the complexity of

O(m\/ LoR? + L2R2)

where m is the complexity of “line search”.

Procedure:
© Run GM to find xp such that f(xp) — f* < 5L2
@ Run special monotone version of FGM from xg.

Main idea: On the sublevel set x € Fp := {x : f(x) < f(x0)}, the
function f is essentially standard 2Lp-smooth:

L
IVEC) < f(l) = V(x| < Lo+ L1l VF(x)I| < 2Lo.
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Experiments



Experiments
We use the following test problem:

1
1 = — P
Xrgﬁ@{f(x) : p“X” }

The initial point xp is chosen such that ||xp|| = R with R = 10.
We choose )
p

Comparison between different methods:

Convergence

Convergence

Convergence

L
] 150 E) G 100 2
Number of iterations Number of iterations

(@)p=4 (b) p=6 (c)p=8
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Experiments — |l

Recall that L; > 0 can be arbitrary for the same problem.

GM with optimal stepsize for different choices of Li:

Convergence - Convergence Convergence
—= L,=1.0 - —= ;=10 100
0 = 11=2.0 1 N\ —e 11=20
\ = ;=40 10
10 wl N\
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07 100 o
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Conclusions



Conclusions

@ We have seen that GM is a natural method for (Lo, L1)-smooth
functions, obtained by minimizing the upper bound on the objective.

@ The clipping stepsize is a simplification of the corresponding optimal
stepsize ensuring the same bound on the function progress.

@ In the convex case, we have obtained complexities of O(L(’TR2 + L2R?)

and O(my/ L°€RZ + L2R?2) for the basic and accelerated method,

respectively.

Open questions:
@ Lower bounds?
@ Alternative smoothness assumptions?

Paper (arXiv:2410.10800)

Optimizing (Lo, L1)-Smooth Functions by Gradient Methods
D. Vankov, A. Rodomanov, A. Nedich, L. Sankar, S. Stich

Thank you!
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