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Introduction

Consider the problem

Find f* = min f(x) with f(x) := %Z fi(x),

xE€RY

Example (Empirical risk minimization):

» We are given observations a; (and possibly their labels ;).

v

Goal: find optimal parameters x* of a parametric model.
» Linear regression (a; € RY, 3; € R):
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Logistic regression (a; € RY, 3; € {—1,1}):
1 n
f(x)==) In(1 —Bia]
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Neural networks, SVMs, CRFs etc.
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Preliminaries

Problem: f* = min £(x), f(x) =13 (x)
XeRd i=1

Goal: Given € > 0, find X such that f(x) — f* <e.

Assumptions:
» Each function f; is L-smooth:
IVAi(x) = VEWI < Llx=yll,  Vx,y €RY
» Function f is u-strongly convex:
F(¥) 2 F)+ (VA y =)+ 5y =xI?, vxy e RY.

Strong convexity of f implies existence of a unique x* : f(x*) = f*.
We consider iterative methods which produce {x*}>¢ : x¥ — x*.



Gradient descent and big sums of functions
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Problem: f* = min f(x), f(x)=

x€Rd i

> fi(x).
=1

Gradient descent:
xkHl = xk — an(xk)

1 n
f ky — = f; k
V&)nng)
Here n € R4 is a step length.
Note:

» Computation of Vf(x¥) requires O(nd) operations.

» When n is very large, this may take a lot of time. Example:
n =108 d = 1000 = evaluating Vf(x*) takes > 2 minutes.

» We need methods with cheaper iterations.



Stochastic gradient descent [Robbins & Monro, 1951]

Problem: f* = min f(x), f(x)= Zn: fi(x).

x€Rd i=1

:\H

Stochastic Gradient Descent (SGD):
Choose iy € {1,...,n} uniformly at random

XHL = Xk T (x0).
Here {nk}k>0 € Ry is a sequence of step lengths converging to 0.

Motivation: E; [V, (x¥)] = Z Vfi(xk) = VF(x¥), i.e., on
average, SGD makes a step in the right direction.
Note:

» Now we only need to compute one gradient instead of n.

> lteration complexity: O(d). Independent of n!

> No reliable stopping criterion (cannot compute ||V £(xk)]|).



Gradient descent vs SGD: Which one is better?

. 1y

Problem: f Xnem];@ f(x), f(x)= ng i(x).

Iteration cost: E sublinear
» Gradient descent: O(nd). ﬁ m
» SGD: O(d). 2

' Time

Convergence rate:
» Gradient descent: linear, O (ndL In l) flops for e-solution.

» SGD: sublinear, O( =) flops for e-solution.

Discussion:
» Complexity of SGD does not depend on n.

» SGD is good for large € and terrible for small e.



Slow convergence of SGD: Why?
Problem: f* = min f(x), f(x)=1 Zn: fi(x).
xER4 i=1

Example (Least squares): fi(x) := (a' x — b;)?

Main reason for slow convergence of SGD is the variance
2
oz =, [HV?‘;(X’() — Vf(xk)H ] .

Note that even if x¥ — x* we have o — o > 0.



Towards a hybrid method

Gradient descent: O(nd) iteration cost, linear convergence.
SGD: O(d) iteration cost, sublinear convergence.

Goal: O(d) iteration cost, linear convergence.

stochastic

deterministic

log(excess cost)

time
Credit: Nicolas Le Roux et al.
Methods: SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013],
SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
We only consider SVRG as the most practical one for a general f;.

Main idea: variance reduction, E;[||gf — V(x*)||?] — 0.



Stochastic Variance Reduced Gradient [Xiao & Zhang, 2014]
Problem: f* = min f(x), f(x) =1 fi(x).
XeRd i=1

Require: XO: initial point; m: update frequency; n: step length.
fors=0,1,... do n
g° = VIF(%) =13 VA(%)
x0 =% =1
for k=0,...,m—1do
Choose ik € {1,..., n} uniformly at random
xktl = xk — W(Vfik(xk) - Vfik()?s) + gs)
end for .
gtli= L 5 Xk (or 571 = x™)
end for k=1

Parameters: usually m = O(n), n = O(1); e.g.
m=2n, n= ﬁ
Note: )

» Works with a constant step length.

» Reliable stopping criterion: [|g°||° < &.



Variance reduction in SVRG

Denote g; := Vfi(x) — Vfi(X) + VFf(X).
Then gj is an unbiased estimate of Vf(x):
Ei[Vfi(x)-V£i(%)+Vf(X)] = VI(x)-VF(X)+VI(X) = VI(x).

Variance:
0% :=E; [Hg,- — Vf(x)||2}

= E; [[(Vhi(x) = V(X)) = (VF(x) = VF(R)?]
(lla+ bl < 2]lall” +25])

< 2B; || VA(x) = VAR + 2 VF(x) = VAP

<212 ||x — R|[* + 2L2 ||x — %2

=412 ||x — ||,

Note: when x — x* and X — x*, then ¢ — 0.
In plain SGD we had g; = Vfi(x) and so o 4 0 when x — x*.



SVRG: Convergence analysis [Xiao & Zhang, 2014]
Theorem
Letn < ﬁ and m is sufficiently large so that
1 4Ln(m+1)
un(1—4Lp)m (1 - aLn)m
Then SVRG converges at a linear rate:
E[f(%°)] — £ < p°[f(X°) — F*].

< 1.

pi=

Discussion:
> Let us choose n = WIL and assume m > 1. Then 4Ln = % and
50t -
o
~— 4+ =
P=3m "3
To ensure p < 1, let us choose m = 100%. Then p = 2.
To reach ¢, we need to perform s = O(In 1) epochs.

Complexity of each epoch: O((n+ m)d) = O((n+ ﬁ)d)

vy
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Thus total complexity is O ((n + ﬁ)d In %)

v

Recall that for gradient descent we had O ((nﬁ)d In %)



Practical performance [Allen-Zhu & Hazan, 2016]
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Figure: Training Error Comparison on neural nets. Y axis: training objective
value; X axis: number of passes over dataset.



Conclusion

>

SGD is a general method which is suitable for any stochastic
optimization problem.

However, SGD has a sublinear rate of convergence. The main
reason for that is the large variance in estimating the gradient
which does not decrease with time.

For the special case of finite sums of functions it is possible to
design SGD-like methods which reduce the variance when
they progress. This allows them to achieve a linear rate of
convergence.

This variance reduction has an effect only after multiple
passes through the data.

If one can perform only a couple passes through the data,
then SGD is an optimal method. If several passes through the
data are allowed, variance reducing methods (e.g. SVRG)
work much better.

Thank you!
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