New Results on Superlinear Convergence of Classical Quasi-Newton Methods

A. Rodomanov (UCLouvain)

March 4, 2021 XIII Symposium on Numerical Analysis and Optimization UFPR, Brazil (online)

Gradient Method

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function.

Gradient method: $x_{k+1} = x_k - h_k \nabla f(x_k)$, $h_k > 0$, $k \ge 0$.

Assumptions: f is μ -strongly convex with L-Lipschitz gradient $(\mu, L > 0)$:

$$\mu I \leq \nabla^2 f(x) \leq LI, \qquad \forall x \in \mathbb{R}^n.$$

Condition number: $Q := L/\mu \ge 1$.

Theorem. Let $h_k \equiv 1/L$. Then, for all $k \ge 0$, we have

$$\|\nabla f(x_k)\| \leq (1-Q^{-1})^k \|\nabla f(x_0)\|.$$

Corollary: Since $1-Q^{-1} \leq \exp(-Q^{-1})$, we get $\|\nabla f(x_k)\| \leq \epsilon \|\nabla f(x_0)\|$ in

$$Q \ln \frac{1}{\epsilon}$$
 iterations.

Newton's Method

Newton's method:
$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k), \quad k \ge 0.$$

Interpretation: Minimization of Taylor's second-order model:

$$x_{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \left[f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle \right]$$

Assumptions: f is μ -strongly convex with L_2 -Lipschitz Hessian:

$$abla^2 f(x) \succeq \mu I, \qquad \|\nabla^2 f(x) - \nabla^2 f(y)\| \le L_2 \|x - y\|, \qquad \forall x, y \in \mathbb{R}^n.$$

Theorem.
$$\|\nabla f(x_k)\| \leq \frac{2\mu^2}{L_2} \left(\frac{L_2}{2\mu^2} \|\nabla f(x_0)\|\right)^{2^k}, \quad k \geq 0.$$

Corollary:
$$\|\nabla f(x_0)\| \le \frac{\mu^2}{L_2} \implies \|\nabla f(x_k)\| \le \left(\frac{1}{2}\right)^{2^k-1} \|\nabla f(x_0)\|, \ k \ge 0.$$

Thus, we get $\|\nabla f(x_k)\| \le \epsilon \|\nabla f(x_0)\|$ in $\log_2 \log_2 \frac{2}{\epsilon}$ iterations.

Comparison of Gradient and Newton Methods

Gradient method:
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k), \quad k \ge 0.$$

- + Very simple. Only requires computing $\nabla f(x_k)$.
- + Iteration cost: O(n).
- + Global linear convergence.
- Very sensitive to condition number Q.

Newton's method:
$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k), \quad k \ge 0.$$

- + Extremely fast quadratic convergence.
- Requires additionally computing and inverting $\nabla^2 f(x_k)$.
- Iteration cost: $O(n^3)$.
- Convergence is only local.

Can we have something in between?

Quasi-Newton Methods. General Idea

General Quasi-Newton Method

Start with $H_0 = L^{-1}I$ and iterate for $k \ge 0$:

- ② Update H_k into H_{k+1} .

Main idea: Make $H_k \approx [\nabla^2 f(x_k)]^{-1}$ by using only the gradients of f and spending at most $O(n^2)$ operations for updating H_k into H_{k+1} .

Updating Hessian Aproximation

Goal: Improve $H \approx A^{-1}$ into $H_+ \approx A^{-1}$.

Approximation along direction

Select $u \neq 0$ and compute $\gamma = Au$. Make sure that H_+ satisfies

$$H_+^{-1}u = \gamma \iff H_+\gamma = u.$$

Note: H_+ is not uniquely defined.

Main idea: Let H_+ be the projection of H onto $\{W: W\gamma = u\}$.

Bregman divergence

Bregman divergence

For a smooth strictly convex function d, define

$$\psi_d(X,Y) := d(Y) - d(X) - \langle \nabla d(X), Y - X \rangle$$

Properties:

- $\psi_d(X, Y) \geq 0$.
- $\psi_d(X, Y) = 0 \iff X = Y$.
- In general, $\psi_d(X, Y) \neq \psi_d(Y, X)$.

Main example: $d(X) := -\ln \det X$, defined on the set of $n \times n$ symmetric positive definite matrices:

$$\psi(X,Y) = \ln \det(XY^{-1}) + \langle X^{-1}, Y \rangle - n.$$

Here $\langle U, V \rangle := \operatorname{tr}(UV)$ is the Frobenius inner product.

BFGS and DFP Updates

Option 1: $H_+ = \operatorname{argmin}_{H_+} \{ \psi(H_+, H) : H_+ \gamma = u \}.$

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

$$\mathsf{BFGS^{-1}}(H,u,\gamma) = H - \frac{H\gamma u^T + u\gamma^T H}{\langle \gamma,u\rangle} + \left(\frac{\langle \gamma,H\gamma\rangle}{\langle \gamma,u\rangle} + 1\right) \frac{uu^T}{\langle \gamma,u\rangle}.$$

Option 2: $H_{+} = \operatorname{argmin}_{H_{+}} \{ \psi(H, H_{+}) : H_{+} \gamma = u \}.$

Davidon-Fletcher-Powell (DFP) update

$$\mathsf{DFP}^{-1}(H,u,\gamma) = H - \frac{H\gamma\gamma^T H}{\langle \gamma, H\gamma \rangle} + \frac{uu^T}{\langle \gamma, u \rangle}.$$

Remark: When we want to highlight that $\gamma = Au$, we prefer to use notation BFGS⁻¹(A, H, u) and DFP⁻¹(A, H, u).

Classical Quasi-Newton Methods

Classical BFGS and DFP Methods

Start with $H_0 = L^{-1}I$ and iterate for $k \ge 0$:

- 2 Compute $u_k = x_{k+1} x_k$, $\gamma_k = \nabla f(x_{k+1}) \nabla f(x_k)$.
- **3** Set $H_{k+1} = \mathsf{BFGS}^{-1}(H_k, u_k, \gamma_k)$ or $H_{k+1} = \mathsf{DFP}^{-1}(H_k, u_k, \gamma_k)$.

Remarks:

- $\gamma_k = A_k u_k$, where $A_k := \int_0^1 \nabla^2 f(x_k + t u_k) dt$.
- If f is quadratic, $f(x) = \frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle$, then $A_k = \nabla^2 f(x_k) = A$.
- In practice, BFGS is much more efficient than DFP.

Superlinear Convergence. Historical Remarks

Main result:
$$\frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} \to 0$$
 as $k \to \infty$.

Historical remarks:

- (Powell, 1971) Superlinear convergence of DFP with exact line search.
- (Dixon, 1972) Under exact line search, all methods from Broyden's class (SR1, DFP, BFGS, ...) coincide.
- (Broyden, Dennis, Moré, 1973) Superlinear convergence of DFP, BFGS (and others) without line search (unit step size).
- (Dennis, Moré, 1974) Characterization of superlinear convergence for quasi-Newton methods.
- **5** . . .

Open question

<u>Rate</u> of superlinear convergence? (explicit nonasymptotic estimates)

Convex Broyden Class

Convex Broyden class $(\tau \in [0,1])$

$$\mathsf{Broyd}_{\tau}^{-1}(H, u, \gamma) := (1 - \tau) \, \mathsf{BFGS}^{-1}(H, u, \gamma) + \tau \, \mathsf{DFP}^{-1}(H, u, \gamma).$$

Classical Quasi-Newton method $(au \in [0,1])$

Set $H_0 = L^{-1}I$ and iterate for $k \ge 0$:

Remark: For the analysis, it is more convenient to work in terms of the primal matrices $G \equiv H^{-1}$ and to highlight that $\gamma = Au$. We denote the corresponding update by $G_+ = \operatorname{Broyd}_{\tau}(A, G, u)$.

Eigenvalue Property

Eigenvalue property

For any $u \in \mathbb{R}^n$, $\tau \in [0,1]$ and $\xi, \eta \geq 1$:

$$\xi^{-1}A \preceq G \preceq \eta A \implies \xi^{-1}A \preceq \operatorname{Broyd}_{\tau}(A, G, u) \preceq \eta A.$$

Corollary: If f is quadratic with Hessian A, then, for all $k \ge 0$,

$$A \leq G_k \leq QA$$
.

(Recall that $G_0 = LI$, $Q = L/\mu$.)

Note: This implies linear convergence with constant $1 - Q^{-1}$.

Quality of Approximation

Directional measure of closeness: $\nu(A, G, u) := \frac{\|(G-A)u\|_{G_+}^*}{\|u\|_G}$.

Here $\|u\|_G \coloneqq \langle Gu, u \rangle^{1/2}$, $\|s\|_{G_+}^* \coloneqq \langle s, G_+^{-1} s \rangle^{1/2}$.

Note: If $u = x_+ - x = -G^{-1}\nabla f(x)$ and $A = \int_0^1 \nabla^2 f(x + tu) dt$, then $\nu = \frac{\|\nabla f(x_+)\|_{G_+}^*}{\|\nabla f(x)\|_G^*}.$

Main result: If $\xi^{-1}A \leq G \leq \eta A$, $\xi, \eta \geq 1$, then

$$\psi(G_+,A) \leq \psi(G,A) - \frac{6}{13}\ln(1+\delta\nu^2),$$

where $\delta := \frac{1}{1+\varepsilon}(1-\tau+\tau\frac{1}{\varepsilon n})$, ψ is the log-det Bregman divergence.

Corollary: If f is quadratic, then $\nu \to 0$.

Main assumptions

Assume the function f is:

1 μ -strongly convex with L-Lipschitz gradient $(\mu, L > 0)$:

$$\mu I \leq \nabla^2 f(x) \leq LI, \qquad \forall x \in \mathbb{R}^n,$$

Denote by $Q := L/\mu \ge 1$ the condition number.

2 *M*-strongly self-concordant $(M \ge 0)$:

$$\nabla^2 f(x) - \nabla^2 f(y) \leq M \|x - y\|_{\nabla^2 f(z)} \nabla^2 f(w), \qquad \forall x, y, z, w \in \mathbb{R}^n.$$

Remark: This is the same class as that of all μ -strongly convex functions with L-Lipschitz gradient and L_2 -Lipschitz Hessian for some $L_2 > 0$. In particular, we can take $M = L_2/\mu^{3/2}$.

Main property: For any $x, y \in \mathbb{R}^n$, $z \in \{x, y\}$ and $r = \|y - x\|_x$:

$$(1 + Mr)^{-1} \nabla^2 f(x) \leq \nabla^2 f(y) \leq (1 + Mr) \nabla^2 f(x),$$

$$(1+\frac{1}{2}Mr)^{-1}\nabla^2 f(z) \leq \int_0^1 \nabla^2 f(x+t(y-x))dt \leq (1+\frac{1}{2}Mr)\nabla^2 f(z).$$

Efficiency Estimates

Local gradient norm: $\lambda_k := \|\nabla f(x_k)\|_{\nabla^2 f(x_k)}^*$.

Theorem. Suppose x_0 is sufficiently close to the solution:

$$M\lambda_0 \leq \frac{\ln\frac{3}{2}}{\left(\frac{3}{2}\right)^{\frac{3}{2}}}\max\Bigl\{\frac{1}{2Q},\frac{1}{K_0+9}\Bigr\}, \quad K_0 \coloneqq \left\lceil \left(1-\tau+\tau\frac{4}{9Q}\right)^{-1}8n\ln(eQ)\right\rceil.$$

Then, for all $k \geq 0$, we have

$$\frac{2}{3}\nabla^2 f(x_k) \leq G_k \leq \frac{3Q}{2}\nabla^2 f(x_k),$$
$$\lambda_k \leq \left(1 - \frac{1}{2Q}\right)^k \sqrt{\frac{3}{2}}\lambda_0,$$

and, for all $k \geq 1$, we have

$$\lambda_k \leq \left[\frac{5}{2}\left(1 - \tau + \tau \frac{4}{9Q}\right)^{-1} \left(\exp\left\{\frac{13n\ln(eQ)}{6k}\right\} - 1\right)\right]^{k/2} \sqrt{\frac{3Q}{2}} \,\lambda_0.$$

Discussion

BFGS (
$$\tau = 0$$
):

$$\left[\exp \left\{ \frac{n \ln Q}{k} \right\} - 1 \right]^k \lesssim \left(\frac{n \ln Q}{k} \right)^k, \qquad k \gtrsim n \ln Q.$$

DFP ($\tau = 1$):

$$\left[Q\left(\exp\left\{\frac{n\ln Q}{k}\right\}-1\right)\right]^k\lesssim \left(\frac{nQ\ln Q}{k}\right)^k, \qquad k\gtrsim nQ\ln Q.$$

Note:

- BFGS has logarithmic dependence on the condition number.
- DFP is much slower (very sensitive to the condition number).

Conclusion

- We have obtained explicit and nonasymptotic rates of local superlinear convergence for classical BFGS and DFP quasi-Newton methods.
- The main factor in these estimates is the starting moment of superlinear convergence: $O(n \ln Q)$ for BFGS and $O(nQ \ln Q)$ for DFP, where n is the problem dimension and Q is its condition number.

Paper

A. Rodomanov, Y. Nesterov. New Results on Superlinear Convergence of Classical Quasi-Newton Methods (2020), arXiv:2004.14866.

Thank you!