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Classical Quasi-Newton (QN) Methods

Problem: miny,cgrn f(x), where f: R" — R is a smooth function.

General scheme of a QN method

Choose some xg € R"”, Hp = 0 and iterate for kK > 0:
Q Set xx11 = xx — axHVf(xk) for some a > 0.
@ Update Hy into Hy1.

Main idea: Ensure that Hy ~ [V2f(xx)] L.

Standard updating rules: Hy 1 := DFP~(Hy, ux,vx) and
Hyp1 = BFGS™Y(Hy, ug, Vi), where uj = X1 — Xk,
Yk = VF(xkt1) — VI (xk).
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Superlinear Convergence. Historical Remarks
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Historical remarks:

Main result: — 0 as kK — oo.

@ [Powell, 1971] Superlinear convergence of DFP with exact line search.

@ [Dixon, 1972] Under exact line search, all methods from Broyden's
class (SR1, DFP, BFGS, ...) coincide.

© [Broyden, Dennis, Moré, 1973] Superlinear convergence of DFP,
BFGS (and others) without line search (unit step size).

Q [Dennis, Moré, 1974] Characterization of superlinear convergence for
QN methods.

Open question

Rate of superlinear convergence?
(explicit nonasymptotic estimates)
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QN Methods from Convex Broyden Class

Convex Broyden class (7 € [0, 1]):
Broyd;*(H, u,7) = (1 — 7) BFGS™*(H, u,~v) + 7 DFP~Y(H, u,~).
Main instances:
o 7=0 = BFGS.
e 7=1 = DFP.

Classical QN scheme (7 € [0, 1])

Choose xp € R", Hy = 0 and iterate for kK > 0:
@ Compute xk11 = xx — H VI (xk).
@ Compute ug = xk+1 — Xk, Yk = VF(xk1) — VF(xk)-
© Update Hy 1 == Broyd(Hx, uk, vk).-
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Main Assumptions

Assume the function f is:
@ -strongly convex with L-Lipschitz gradient (u, L > 0):

pl < V2f(x) < LI,  VxeR",
Condition number: Q == L/pu (> 1).
@ M-strongly self-concordant (M > 0):
V2f(x) — V3f(y) = M||x — y||,V?f(w), Vx,y,z,w € R",
where ||h||, == (V2f(z)h, h)1/2.
Remarks:
e For quadratic functions M = 0.

00+ @ < O + Lr-Lipschitz Hessian.
@ @ is an affine invariant property.

Main property: For any x,y € R" and r == ||y — x||«:
(1+ Mr)"tV2f(x) = V?f(y) < (1 + Mr)V?f(x)
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Efficiency Estimates

Local gradient norm: X\, == [[Vf(x)[%, .

Theorem. Suppose Hy = %I and xg is sufficiently close to the solution:
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where Q- = (1 —7 + T%Q_l)_l. Then, for all kK > 0, we have
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and, for all kK > 1, we have
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Remark: For quadratic functions M = 0 and this is global convergence.
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Discussion

BFGS (7 =0):

@ Region of local convergence: Mg < max{Q~1,[nIn Q]~1}.

o Rate:
nin Q k nln Q\*
[exp{ p }—1} ,S( p ) , k= ninQ.

DFP (r = 1):

@ Region of local convergence: M)y < Q1.

o Rate:
k k
o) ) < ()" zromo

@ BFGS has logarithmic dependence on the condition number Q.

Note:

@ DFP is much slower.
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Notation

Let A> 0 and u € R"\ {0} be arbitrary. Define
H, = Broyd_(H, u,v), v = Au.
Classical QN update:

1
U= x4 — X, A::/ V2f(x 4 tu)dt = Au= Vf(x;)— VF(x).
0

Remark: For the analysis, it is more convenient to work in terms of the
primal matrices

G=H"' Gp= H;l.

Anton Rodomanov New Results on Quasi-Newton Methods EUROPT (July 7, 2021) 8/13



Eigenvalue Property

Eigenvalue property
Forany u ¢ R", 7 € [0,1] and &, > 1:
EIA<G=<nA = ¢A<G, <A

Corollary: For a quadratic function f with Hessian A, we have
A=<Gy =< QA [since Go = LI]
(recall that Q := L/u). Therefore, for all k > 0:
A= G 2 QA

— The method has the linear convergence with constant 1 — QL.
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Quality of Approximation

Directional measure of closeness: v(A, G, u) = Talle

l(G-AYully, J

Here [lullg i= (Gu, 4)2, [s][5, = (5, G151/
Note: If u=x; —x = -G 1Vf(x) and A= fol V2f(x + tu)dt, then

IVE(x)lG,

YA G0 = T

because Au = Vf(xy) — Vf(x).

Corollary: vy — 0 <= Vf(xx) — 0 superlinearly.
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Potential Function

Augmented Log-Det Barrier
For X, Y > 0, define

P(X,Y) = —Indet Y +Indet X + (X1 Y — X),
where (U, V) = tr(UV) is the Frobenius inner product.

Remarks:
@ This is the Bregman distance generated by d(X) := —Indet X:
P(X,Y)=d(Y)—d(X)— (Vd(X),Y — X) > 0.
o First used in [Byrd, Nocedal, 1989] for the analysis of QN methods.
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Main Result

Main result: If £ 1A < G < nA for some &, > 1, then
7/1(G+,A) < ¢(GaA) - % In(l + 57/2)7
where § = (1 =7+ 75).

Corollary: If f is quadratic, then v — 0.
Note: ¢(Gp, A) < Indet Gy — Indet A < nln Q (since A < Gy < QA).

Remark: In the nonlinear case, we need to additionally bound the “error”
term (G4, Ay) — (G, A).
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Conclusion
@ We have obtained explicit and nonasymptotic rates of local superlinear
convergence for classical BFGS and DFP quasi-Newton methods.

@ The main factor in these estimates is the starting moment of
superlinear convergence: O(nIn Q) for BFGS and O(nQ In Q) for
DFP, where n is the problem dimension and @ is its condition number.

Open questions:
@ Is it possible to remove the In @ factor?
o Choice of initial matrix (Ho = 1/)?
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