New Results on Superlinear Convergence of Classical Quasi-Newton Methods

Anton Rodomanov (UCLouvain) (joint work with Y. Nesterov)

July 7, 2021 EUROPT 2021 (virtual) 18th Workshop on Advances in Continuous Optimization

Classical Quasi-Newton (QN) Methods

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function.

General scheme of a QN method

Choose some $x_0 \in \mathbb{R}^n$, $H_0 \succ 0$ and iterate for $k \geq 0$:

- Set $x_{k+1} := x_k \alpha_k H_k \nabla f(x_k)$ for some $\alpha_k \ge 0$.
- ② Update H_k into H_{k+1} .

Main idea: Ensure that $H_k \approx [\nabla^2 f(x_k)]^{-1}$.

Standard updating rules: $H_{k+1} := \mathsf{DFP}^{-1}(H_k, u_k, \gamma_k)$ and $H_{k+1} := \mathsf{BFGS}^{-1}(H_k, u_k, \gamma_k)$, where $u_k := x_{k+1} - x_k$, $\gamma_k := \nabla f(x_{k+1}) - \nabla f(x_k)$.

- DFP⁻¹ $(H, u, \gamma) := H \frac{H\gamma\gamma^T H}{\langle \gamma, H\gamma \rangle} + \frac{uu^T}{\langle \gamma, u \rangle}$,
- $\bullet \ \mathsf{BFGS}^{-1}(H,u,\gamma) \coloneqq H \tfrac{H\gamma u^T + u\gamma^T H}{\langle \gamma,u \rangle} + \left(\tfrac{\langle \gamma,H\gamma \rangle}{\langle \gamma,u \rangle} + 1 \right) \tfrac{uu^T}{\langle \gamma,u \rangle},$

Superlinear Convergence. Historical Remarks

Main result:
$$\frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} \to 0$$
 as $k \to \infty$.

Historical remarks:

- [Powell, 1971] Superlinear convergence of DFP with exact line search.
- ② [Dixon, 1972] Under exact line search, all methods from Broyden's class (SR1, DFP, BFGS, ...) coincide.
- [Broyden, Dennis, Moré, 1973] Superlinear convergence of DFP, BFGS (and others) without line search (unit step size).
- [Dennis, Moré, 1974] Characterization of superlinear convergence for QN methods.
- **5** . . .

Open question

Rate of superlinear convergence? (explicit nonasymptotic estimates)

QN Methods from Convex Broyden Class

Convex Broyden class ($\tau \in [0,1]$):

$$\mathsf{Broyd}_{\tau}^{-1}(H, u, \gamma) \coloneqq (1 - \tau) \, \mathsf{BFGS}^{-1}(H, u, \gamma) + \tau \, \mathsf{DFP}^{-1}(H, u, \gamma).$$

Main instances:

- $\tau = 0 \implies \mathsf{BFGS}$.
- $\tau = 1 \implies \mathsf{DFP}$.

Classical QN scheme $(au \in [0,1])$

Choose $x_0 \in \mathbb{R}^n$, $H_0 \succ 0$ and iterate for $k \geq 0$:

- **3** Update $H_{k+1} := \operatorname{Broyd}_{\tau}^{-1}(H_k, u_k, \gamma_k)$.

Main Assumptions

Assume the function f is:

1 μ -strongly convex with L-Lipschitz gradient (μ , L > 0):

$$\mu I \leq \nabla^2 f(x) \leq LI, \qquad \forall x \in \mathbb{R}^n,$$

Condition number: $Q := L/\mu \ (\geq 1)$.

2 *M*-strongly self-concordant $(M \ge 0)$:

$$\nabla^2 f(x) - \nabla^2 f(y) \leq M \|x - y\|_z \nabla^2 f(w), \qquad \forall x, y, z, w \in \mathbb{R}^n,$$
 where $\|h\|_z := \langle \nabla^2 f(z)h, h \rangle^{1/2}$.

Remarks:

- For quadratic functions M = 0.
- $\mathbf{0} + \mathbf{2} \iff \mathbf{0} + L_2$ -Lipschitz Hessian.
- 2 is an affine invariant property.

Main property: For any $x, y \in \mathbb{R}^n$ and $r := ||y - x||_x$:

$$(1+Mr)^{-1}\nabla^2 f(x) \leq \nabla^2 f(y) \leq (1+Mr)\nabla^2 f(x)$$

Efficiency Estimates

Local gradient norm: $\lambda_k := \|\nabla f(x_k)\|_{x_k}^*$.

Theorem. Suppose $H_0 = \frac{1}{L}I$ and x_0 is sufficiently close to the solution:

$$M\lambda_0 \leq \frac{\ln\frac{3}{2}}{\left(\frac{3}{2}\right)^{\frac{3}{2}}}\max\Bigl\{\frac{1}{2Q},\frac{1}{K_0+9}\Bigr\}, \quad K_0 \coloneqq \lceil 8nQ_\tau \ln(2Q)\rceil,$$

where $Q_{\tau}:=(1- au+ aurac{4}{9}Q^{-1})^{-1}.$ Then, for all $k\geq 0$, we have

$$\lambda_k \le \left(1 - \frac{1}{2Q}\right)^k \sqrt{\frac{3}{2}} \, \lambda_0,$$

and, for all $k \geq 1$, we have

$$\lambda_k \leq \left[\frac{5}{2}Q_{\tau}\left(\exp\left\{\frac{13n\ln(2Q)}{6k}\right\} - 1\right)\right]^{k/2}\sqrt{\frac{3Q}{2}}\,\lambda_0.$$

Remark: For quadratic functions M = 0 and this is global convergence.

Discussion

BFGS ($\tau = 0$):

- Region of local convergence: $M\lambda_0 \lesssim \max\{Q^{-1}, [n \ln Q]^{-1}\}.$
- Rate:

$$\left[\exp\left\{\frac{n\ln Q}{k}\right\}-1\right]^k\lesssim \left(\frac{n\ln Q}{k}\right)^k, \qquad k\gtrsim n\ln Q.$$

DFP ($\tau = 1$):

- Region of local convergence: $M\lambda_0 \lesssim Q^{-1}$.
- Rate:

$$\left[Q\left(\exp\left\{\frac{n\ln Q}{k}\right\}-1\right)\right]^k\lesssim \left(\frac{nQ\ln Q}{k}\right)^k, \qquad k\gtrsim nQ\ln Q.$$

Note:

- ullet BFGS has logarithmic dependence on the condition number Q.
- DFP is much slower.

Notation

Let $A \succ 0$ and $u \in \mathbb{R}^n \setminus \{0\}$ be arbitrary. Define

$$H_+ := \operatorname{Broyd}_{\tau}^{-1}(H, u, \gamma), \qquad \gamma := Au.$$

Classical QN update:

$$u:=x_+-x,\ A:=\int_0^1 \nabla^2 f(x+tu)dt \implies Au=\nabla f(x_+)-\nabla f(x).$$

Remark: For the analysis, it is more convenient to work in terms of the primal matrices

$$G := H^{-1}, \quad G_+ := H_+^{-1}.$$

Eigenvalue Property

Eigenvalue property

For any $u \in \mathbb{R}^n$, $\tau \in [0,1]$ and $\xi, \eta \geq 1$:

$$\xi^{-1}A \leq G \leq \eta A \implies \xi^{-1}A \leq G_{+} \leq \eta A.$$

Corollary: For a quadratic function f with Hessian A, we have

$$A \leq G_0 \leq QA$$
 [since $G_0 = LI$]

(recall that $Q := L/\mu$). Therefore, for all $k \ge 0$:

$$A \leq G_k \leq QA$$
.

 \implies The method has the linear convergence with constant $1 - Q^{-1}$.

Quality of Approximation

Directional measure of closeness: $\nu(A, G, u) := \frac{\|(G-A)u\|_{G_+}^*}{\|u\|_G}$.

Here
$$\|u\|_G \coloneqq \langle Gu, u \rangle^{1/2}$$
, $\|s\|_{G_+}^* \coloneqq \langle s, G_+^{-1} s \rangle^{1/2}$.

Note: If $u = x_+ - x = -G^{-1}\nabla f(x)$ and $A = \int_0^1 \nabla^2 f(x + tu) dt$, then

$$\nu(A, G, u) = \frac{\|\nabla f(x_+)\|_{G_+}^*}{\|\nabla f(x)\|_{G}^*}$$

because $Au = \nabla f(x_+) - \nabla f(x)$.

Corollary: $\nu_k \to 0 \iff \nabla f(x_k) \to 0$ superlinearly.

Potential Function

Augmented Log-Det Barrier

For $X, Y \succ 0$, define

$$\psi(X, Y) := - \ln \det Y + \ln \det X + \langle X^{-1}, Y - X \rangle,$$

where $\langle U, V \rangle := \operatorname{tr}(UV)$ is the Frobenius inner product.

Remarks:

• This is the Bregman distance generated by $d(X) := -\ln \det X$:

$$\psi(X,Y) = d(Y) - d(X) - \langle \nabla d(X), Y - X \rangle \ge 0.$$

• First used in [Byrd, Nocedal, 1989] for the analysis of QN methods.

Main Result

Main result: If $\xi^{-1}A \leq G \leq \eta A$ for some $\xi, \eta \geq 1$, then

$$\psi(\mathsf{G}_+,\mathsf{A}) \leq \psi(\mathsf{G},\mathsf{A}) - \frac{6}{13} \ln(1+\delta \nu^2),$$

where $\delta \coloneqq \frac{1}{1+\xi} (1-\tau+\tau\frac{1}{\xi\eta})$.

Corollary: If f is quadratic, then $\nu \to 0$.

Note: $\psi(G_0, A) \leq \ln \det G_0 - \ln \det A \leq n \ln Q$ (since $A \leq G_0 \leq QA$).

Remark: In the nonlinear case, we need to additionally bound the "error" term $\psi(G_+, A_+) - \psi(G_+, A)$.

Conclusion

- We have obtained explicit and nonasymptotic rates of local superlinear convergence for classical BFGS and DFP quasi-Newton methods.
- The main factor in these estimates is the starting moment of superlinear convergence: $O(n \ln Q)$ for BFGS and $O(nQ \ln Q)$ for DFP, where n is the problem dimension and Q is its condition number.

Open questions:

- Is it possible to remove the In Q factor?
- Choice of initial matrix $(H_0 = \frac{1}{L}I)$?

Paper

A. Rodomanov, Y. Nesterov. New Results on Superlinear Convergence of Classical Quasi-Newton Methods. *Journal of Optimization Theory and Applications* **188**, 744–769 (2021).

Thank you!