Modern analysis of local convergence for classical quasi-Newton methods

Anton Rodomanov

UCLouvain, Belgium

March 13, 2023

Toulouse School of Economics, Toulouse

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- 2 Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- 2 Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Optimization Problems

Minimize a given function subject to certain constraints:

$$\min_{x \in Q} f(x),$$

where $Q \subseteq \mathbb{R}^n$.

Many applications:

- Machine Learning
- Economics
- Engineering
- Telecommunications
- Signal Processing
- . . .

Example: Machine Learning

Empirical loss minimization:

$$\min_{x} \sum_{i=1}^{m} \ell(b_i, \hat{b}(x, a_i))$$

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- 2 Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Gradient Method

Problem: $\min_{x \in \mathbb{R}^n} f(x)$.

Gradient of a function: $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_i}\right)_{i=1}^n \ (\in \mathbb{R}^n).$

Gradient Method

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \qquad k \ge 0,$$

where $\alpha_k \geq 0$ are certain "step sizes".

Example: Convergence Plot

Example: Slow Convergence

Why so slow?

Convergence Theory for Gradient Method

Problem class: Strongly convex functions with Lipschitz gradient:

$$\mu I \preceq \nabla^2 f(x) \preceq LI, \qquad \forall x \in \mathbb{R}^n,$$

where
$$\nabla^2 f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{i,j=1}^n \ (\in \mathbb{S}^n).$$

Main parameter: Condition number $\varkappa := \frac{L}{\mu} \ (\geq 1)$.

Convergence rate: $f(x_k) - f^* \le (1 - \varkappa^{-1})^k [f(x_0) - f^*].$

Complexity bound

$$K(\epsilon) = \varkappa \ln(\epsilon^{-1})$$

iterations to find x_k such that $f(x_k) - f^* \le \epsilon [f(x_0) - f^*]$.

Good and Bad Examples Revisited

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- 2 Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Newton's Method

Problem: $\min_{x \in \mathbb{R}^n} f(x)$.

Newton's Method

$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k).$$

Interpretation: Automatic preconditioning (scaling) of Gradient Method.

Main idea: Minimize quadratic model around previous point:

$$f(x) \approx f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

Newton's Method: Convergence Rate

Main assumption: f is μ -strongly convex with L_2 -Lipschitz Hessian.

Local quadratic convergence:

$$\|\nabla f(x_{k+1})\| \leq \frac{L_2}{2\mu^2} \|\nabla f(x_k)\|^2.$$

Very fast convergence: $r_{k+1} \leq r_k^2 \ (0.1 \rightarrow 0.01 \rightarrow 0.0001 \rightarrow \dots)$.

Complexity bound

When started sufficiently close to solution¹, Newton's method needs

$$K(\epsilon) = \log_2 \log_2 O(\epsilon^{-1})$$

iterations to find x_k such that $f(x_k) - f^* \le \epsilon [f(x_0) - f^*]$.

Specifically, when $\|\nabla f(x_0)\| \leq O(\mu^2/L_2)$.

Globally Convergent Variants of Newton's Method

Damped Newton's Method:

$$x_{k+1} = x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k),$$

where $\alpha_k \in [0,1]$ and $\alpha_k \to 1$ as $k \to \infty$.

Other variants:

- Levenberg-Marquardt regularization (Levenberg, 1944; Marquardt, 1963).
- Trust-region methods (Goldfeld et al., 1966; Conn et al., 2000).
- Cubic regularization (Nesterov and Polyak, 2006):

$$\begin{aligned} x_{k+1} &= \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle \right. \\ &+ \frac{1}{2} \langle \nabla^2 f(x_k) (x - x_k), x - x_k \rangle + \frac{M_k}{6} \|x - x_k\|^3 \right\} \\ &= x_k - \left(\nabla^2 f(x_k) + \frac{1}{2} M_k r_k I \right)^{-1} \nabla f(x_k), \qquad r_k := \|x_{k+1} - x_k\|. \end{aligned}$$

Example

Cost of One Iteration

• Gradient Method: $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$:

$$Cost(\nabla f) + O(n)$$
.

• Newton's Method: $x_{k+1} = x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$:

$$Cost(\nabla f) + Cost(\nabla^2 f) + O(n^3).$$

Example: Small Dimension

Example: Large dimension

Summary: Gradient Method vs Newton's Method

Method	Cheap iteration?	Fast convergence?
Gradient Method	Yes	No
Newton's Method	No	Yes

Can we have something in between?

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- 2 Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Quasi-Newton Methods (Davidon, 1959; Fletcher and Powell, 1963)

Problem: $\min_{x \in \mathbb{R}^n} f(x)$.

Quasi-Newton iteration

$$x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k),$$

where

$$H_k \approx [\nabla^2 f(x_k)]^{-1}$$
.

Main question: How to update H_k at each iteration?

Secant Equation

Goal: Update

$$H \approx [\nabla^2 f(x)]^{-1}$$
 into $H_+ \approx [\nabla^2 f(x_+)]^{-1}$

using the information computed at x and x_+ :

$$\nabla f(x)$$
 and $\nabla f(x_+)$.

Secant equation

Choose H_+ such that

$$H_{+}\gamma = \delta, \qquad (*$$

where

$$\delta \coloneqq x_+ - x, \qquad \gamma \coloneqq \nabla f(x_+) - \nabla f(x).$$

Note: (*) is satisfied by J^{-1} for

$$J := \int_0^1 \nabla^2 f(x + t\delta) dt \quad (\approx \nabla^2 f(x_+)).$$

Least Change Principle

Define some distance $\beta(\cdot,\cdot)$ between two (positive definite) matrices.

Least Change Problem

$$\min_{H_+} \{\beta(H, H_+) : H_+ \gamma = \delta\}.$$

Main Updating Formulas

Davidon–Fletcher–Powell (DFP):

$$H_+ = \mathsf{DFP}^{-1}(H, \delta, \gamma) \coloneqq H - \frac{H\gamma\gamma^T H}{\langle \gamma, H\gamma \rangle} + \frac{\delta\delta^T}{\langle \gamma, \delta \rangle}.$$

Broyden–Fletcher–Goldfarb–Shanno (BFGS):

$$H_{+} = \mathsf{BFGS^{-1}}(H, \delta, \gamma) \coloneqq H - \frac{H\gamma\delta^{T} + \delta\gamma^{T}H}{\langle \gamma, \delta \rangle} + \left(\frac{\langle \gamma, H\gamma \rangle}{\langle \gamma, \delta \rangle} + 1\right) \frac{\delta\delta^{T}}{\langle \gamma, \delta \rangle}.$$

Note: Cost of each update is $O(n^2)$ (not $O(n^3)$!).

Example

Summary: Quasi-Newton Methods

- Approximate Newton's Method without computing Hessian.
- Very efficient in practice.
- Can be extended to large-scale problems (L-BFGS).

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- 2 Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Classical Results on QN Methods

Local convergence (Broyden et al., 1973)

Suppose *f* is strongly convex with Lipschitz Hessian.

Consider either BFGS or DFP method with unit step sizes:

$$\alpha_k \equiv 1, \quad \forall k \geq 0.$$

Then, $\forall \rho \in (0,1)$, $\exists \delta_1, \delta_2 > 0$ such that, $\forall (x_0, H_0)$ satisfying

$$||x_0 - x^*|| \le \delta_1$$
 and $||H_0 - [\nabla^2 f(x^*)]^{-1}|| \le \delta_2$,

it holds that

$$||x_{k+1} - x^*|| \le \rho ||x_k - x^*||, \quad \forall k \ge 0.$$

Moreover, the rate of convergence is superlinear:

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0.$$

Classical Results on QN Methods II

Global convergence (Powell, 1976; Byrd and Nocedal, 1989)

Suppose f is strongly convex with Lipschitz gradient and Hessian.

Consider BFGS method with an appropriate line search².

Then, for any x_0 and H_0 , it holds that

$$\lim_{k\to\infty}x_k=x^*.$$

Moreover, the rate of convergence is superlinear:

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0.$$

2

$$f(x_k - \alpha_k H_k \nabla f(x_k)) \leq f(x_k) - c_1 \alpha_k \langle \nabla f(x_k), H_k \nabla f(x_k) \rangle$$

for a certain fixed constant $c_1 \in (0,1)$.

 $^{^2}$ One possible option is the standard backtracking line search: find the smallest integer $i_k \geq 0$ such that $\alpha_k = 2^{-i_k}$ satisfies

Criticism

- Classical results are only qualitative (nonexplicit and asymptotic).
- No concrete efficiency estimates / complexity bounds.

Example (BFGS vs DFP):

- Classical results do not explain why BFGS is so much better.
- Cannot use them to compare BFGS with other methods.

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Based on

Paper

A. Rodomanov and Y. Nesterov. New Results on Superlinear Convergence of Classical Quasi-Newton Methods. *Journal of Optimization Theory and Applications*, 188:744–769, 2021.

Related:

- A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for classical quasi-Newton methods. *Mathematical Programming*, 194:159–190, 2022.
- A. Rodomanov and Y. Nesterov. Greedy Quasi-Newton Methods with Explicit Superlinear Convergence. SIAM Journal on Optimization, 31(1):785–811, 2021.

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Classical QN Methods

Problem: $\min_{x \in \mathbb{R}^n} f(x)$.

Convex Broyden Class $(\tau \in [0,1])$

$$\mathsf{Broyd}_{\tau}^{-1}(H,\delta,\gamma) := (1-\tau)\,\mathsf{BFGS}^{-1}(H,\delta,\gamma) + \tau\,\mathsf{DFP}^{-1}(H,\delta,\gamma).$$

Remarks:

- ullet Contains both BFGS (au=0) and DFP (au=1).
- Can be computed in $O(n^2)$ operations.

Convex Broyden Method

Choose $x_0 \in \mathbb{R}^n$, $H_0 \in \mathbb{S}^n_{++}$. Iterate for $k \geq 0$:

- **2** Compute $\delta_k := x_{k+1} x_k$ and $\gamma_k := \nabla f(x_{k+1}) \nabla f(x_k)$.
- **3** Update $H_{k+1} := \text{Broyd}_{\tau}^{-1}(H_k, \delta_k, \gamma_k)$.

Problem Class

1 If is μ -strongly convex with L-Lipschitz gradient $(\mu, L > 0)$:

$$\mu I \preceq \nabla^2 f(x) \preceq LI, \quad \forall x \in \mathbb{R}^n.$$

Condition number: $\varkappa := \frac{L}{\mu} \ (\geq 1)$.

② f is M-strongly self-concordant ($M \ge 0$):

$$\nabla^2 f(x) - \nabla^2 f(y) \leq M \|x - y\|_z \nabla^2 f(w), \qquad \forall x, y, z, w \in \mathbb{R}^n,$$

where
$$\|h\|_z \coloneqq \langle \nabla^2 f(z)h, h \rangle^{1/2}$$
.

Remarks:

- ullet Strong self-concordance \Longrightarrow self-concordance.
- • + \iff + L_2 -Lipschitz Hessian $(M = L_2/\mu^{3/2})$.
- ② is an affine invariant property.
- For quadratic functions, M = 0.

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Final Complexity Bound

Main quantity: "Starting moment of superlinear convergence"

$$K_0 = O(n\varkappa_{\tau}\ln(2\varkappa)), \qquad \varkappa_{\tau} := (1-\tau+\tau\frac{4}{9}\varkappa^{-1})^{-1}.$$

Assumptions:

- Initial point x_0 is suff. good: $M\|\nabla f(x_0)\|_{x_0}^* \le \max\{O(\varkappa^{-1}), K_0^{-1}\}.$
- Initial Hessian approximation: $H_0 := \frac{1}{L}I$.

Complexity bound

$$K(\epsilon) = \min \{ \underbrace{\frac{1}{\kappa \ln O(\epsilon^{-1})}}_{\substack{\text{Complexity of} \\ \text{Gradient method}}}, K_0 + \ln O(\epsilon^{-1}) \},$$

iterations to produce x_k such that $f(x_k) - f^* \le \epsilon [f(x_0) - f^*]$.

Discussion

Method	Complexity
BFGS	$\min \{ arkappa \ln O(\epsilon^{-1}), O(n \ln(2arkappa)) + \ln O(\epsilon^{-1}) \}$
DFP	$\minig\{arkappa ln O(\epsilon^{-1}), Oig(rac{narkappa ln(2arkappa)}{2}ig) + ln O(\epsilon^{-1})ig\}$

- BFGS is almost insensitive to condition number \varkappa .
- For $\varkappa \gg n$, its total arithmetical complexity is essentially

$$O(n \ln(2\varkappa)) \times O(n^2) = O(n^3 \ln(2\varkappa)) = \widetilde{O}(n^3)$$

(similar to one Newton's step).

• In contrast, for ill-conditioned problems ($\varkappa \gg n$), the superlinear convergence of DFP may be of no practical use.

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Main Result

Local gradient norm: $\lambda_k := \|\nabla f(x_k)\|_{x_k}^*$.

Theorem. Let $H_0 = \frac{1}{L}I$ and x_0 be sufficiently close to solution:

$$M\lambda_0 \leq \frac{\ln(3/2)}{(3/2)^{3/2}} \max\{(2\varkappa)^{-1}, (K_0+9)^{-1}\}, \quad K_0 := \lceil 8n\varkappa_{\tau} \ln(2\varkappa) \rceil,$$

where $\varkappa_{\tau} \coloneqq (1 - \tau + \tau \frac{4}{9} \varkappa^{-1})^{-1}$. Then, for all $k \ge 1$, we have

$$\lambda_k \le \left(1 - (2\varkappa)^{-1}\right)^k \sqrt{\frac{3}{2}} \,\lambda_0,$$
$$\lambda_k \le \left[\frac{5}{2} \varkappa_\tau \left((2\varkappa)^{13n/(6k)} - 1 \right) \right]^{k/2} \sqrt{\frac{3}{2}\varkappa} \,\lambda_0.$$

From Gradient Norms to Function Values

For self-concordant functions, we have

$$\frac{\lambda^2(x)}{2 + M\lambda(x)} \le f(x) - f^* \le \frac{\lambda^2(x)}{2 - M\lambda(x)}$$

for any x such that $M\lambda(x) < 2$, where $\lambda(x) := \|\nabla f(x)\|_x^*$.

• In particular, if $M\lambda(x) \leq 1$, then

$$\frac{1}{3}\lambda^2(x) \le f(x) - f^* \le \lambda^2(x).$$

• In our methods, $M\lambda_k \leq 1$ for all $k \geq 0$. Thus,

$$\lambda_k^2 \leq (\frac{1}{3}\epsilon)\lambda_0^2 \quad \Longrightarrow \quad f(x_k) - f^* \leq \epsilon [f(x_0) - f^*].$$

Change of Notation

Direct QN update: For $G \in \mathbb{S}_{++}^n$, $\delta, \gamma \in \mathbb{R}^n$, define

$$\mathsf{Upd}(G, \delta, \gamma) := [\mathsf{Upd}^{-1}(G^{-1}, \delta, \gamma)]^{-1}.$$

Explicit formulas:

$$\mathsf{BFGS}(G, \delta, \gamma) = G - \frac{G\delta\delta^T G}{\langle G\delta, \delta \rangle} + \frac{\gamma\gamma^T}{\langle \gamma, \delta \rangle},$$
$$\mathsf{DFP}(G, \delta, \gamma) = G - \frac{G\delta\gamma^T + \gamma\delta^T G}{\langle \gamma, \delta \rangle} + \left(\frac{\langle G\delta, \delta \rangle}{\langle \gamma, \delta \rangle} + 1\right) \frac{\gamma\gamma^T}{\langle \gamma, \delta \rangle}.$$

Matrix-revealing form: For $G, A \in \mathbb{S}_{++}^n$ and $u \in \mathbb{R}^n$, define

$$\mathsf{Upd}(G, A, u) := \mathsf{Upd}(G, u, Au).$$

Classical QN update:

$$u=x_+-x,\ A=\int_0^1 \nabla^2 f(x+tu)dt \implies Au=\nabla f(x_+)-\nabla f(x).$$

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Eigenvalue Property

Hereinafter, $A,G\in\mathbb{S}^n_{++},\ u\in\mathbb{R}^n,\ au\in[0,1]$ are arbitrary and $G_+=\operatorname{Broyd}_{ au}(G,A,u).$

Eigenvalue property

For any $\xi, \eta \geq 1$, the following implication holds:

$$\xi^{-1}A \prec G \prec \eta A \implies \xi^{-1}A \prec G_+ \prec \eta A.$$

Quality of Approximation

Directional measure of closeness

$$\nu(G,A,u) := \frac{\|(G-A)u\|_{G_+}^*}{\|u\|_G}.$$

Here $\|u\|_G := \langle Gu, u \rangle^{1/2}$, $\|s\|_{G_+}^* := \langle s, G_+^{-1}s \rangle^{1/2}$.

Note: If $u = x_{+} - x = -G^{-1}\nabla f(x)$ and $A = \int_{0}^{1} \nabla^{2} f(x + tu) dt$, then

$$\nu(G, A, u) = \frac{\|\nabla f(x_+)\|_{G_+}^*}{\|\nabla f(x)\|_G^*}$$

because $Au = \nabla f(x_+) - \nabla f(x)$.

Our goal: Show that $\nu \to 0$ (and estimate the rate of convergence).

Potential Function

Augmented Log-Det Barrier

For $X, Y \succ 0$, define

$$\psi(X, Y) := - \ln \det Y + \ln \det X + \langle X^{-1}, Y - X \rangle,$$

where $\langle U, V \rangle := \operatorname{tr}(UV)$ is the Frobenius inner product.

Remarks:

• This is the Bregman divergence generated by $d(X) := -\ln \det X$:

$$\psi(X,Y) = d(Y) - d(X) - \langle \nabla d(X), Y - X \rangle \ge 0.$$

• First used in (Byrd and Nocedal, 1989) for the analysis of QN methods.

Key Result

Key result

If $\xi^{-1}A \leq G \leq \eta A$ for some $\xi, \eta \geq 1$, then

$$\psi(G_+, A) \le \psi(G, A) - \frac{6}{13} \ln(1 + \delta \nu^2),$$

where $\delta := \frac{1}{1+\varepsilon} (1-\tau+\tau\frac{1}{\varepsilon_n})$ and $\nu := \nu(G, A, u)$.

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Minimizing Quadratic Function

Problem

$$\min_{x \in \mathbb{R}^n} \Big[f(x) := \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle \Big],$$

where $A \in \mathbb{S}^n_{++}$ and $b \in \mathbb{R}^n$.

Main assumption: $\mu I \leq A \leq LI$ for some $\mu, L > 0$.

Convex Broyden Method

Given $x_0 \in \mathbb{R}^n$, set $G_0 = LI$, and iterate for $k \ge 0$:

- **1** Set $x_{k+1} = x_k G_k^{-1} \nabla f(x_k)$.
- ② Set $G_{k+1} = \text{Broyd}_{\tau}(G_k, A, u_k)$ for $u_k := x_{k+1} x_k$.

Accuracy measure: $\lambda_k = \|\nabla f(x_k)\|_A^*$.

Linear Convergence

Bounds on Hessian approximations: $A \leq G_k \leq \varkappa A$, $\forall k \geq 0$.

Proof: Indeed, by construction

$$A \leq G_0 = LI = \varkappa(\mu I) \leq \varkappa A$$
,

and each subsequent update preserves these bounds.

Corollary (linear convergence): $\lambda_{k+1} \leq (1 - \varkappa^{-1})\lambda_k$, $\forall k \geq 0$.

Proof: Recall that
$$u_k = x_{k+1} - x_k = -G_k^{-1} \nabla f(x_k)$$
. Hence,

$$\nabla f(x_{k+1}) = \nabla f(x_k) + Au_k = \nabla f(x_k) - AG_k^{-1} \nabla f(x_k).$$

Therefore,

$$\lambda_{k+1} \equiv \|\nabla f(x_{k+1})\|_{\mathcal{A}}^* = \|(A^{-1} - G_{k}^{-1})\nabla f(x_{k})\|_{\mathcal{A}}^* \leq (1 - \varkappa^{-1})\lambda_{k}.$$

Superlinear Sonvergence

$$\lambda_k \leq \left[\varkappa_{\tau}(\varkappa^{13n/(6k)} - 1)\right]^{k/2} \sqrt{\varkappa} \lambda_0, \qquad \forall k \geq 1,$$

where $\varkappa_{\tau} := 2(1 - \tau + \tau \varkappa^{-1})^{-1}$.

Proof: Using the key result, we get, for any $i \ge 0$,

$$\phi(\nu_i) := \frac{6}{13} \ln(1 + \varkappa_\tau \nu_i^2) \le \psi_i - \psi_{i+1}, \qquad \nu_i = \frac{g_{i+1}}{g_i},$$

where $g_i \coloneqq \|\nabla f(x_i)\|_{G_i}^*$ and $\psi_i \coloneqq \psi(G_i, A) \ge 0$. Hence,

$$\sum_{i=0}^{k-1} \phi(\nu_i) \le \psi_0 \le n \ln \varkappa.$$

By convexity of $t \mapsto \ln(1 + e^t)$, it follows that

$$\frac{n \ln \varkappa}{k} \ge \frac{1}{k} \sum_{i=0}^{k-1} \phi(\nu_i) \ge \phi\left(\left[\prod_{i=0}^{k-1} \nu_i\right]^{1/k}\right) = \phi\left(\left[\frac{g_k}{g_0}\right]^{1/k}\right).$$

It remains to rearrange and connect g_k with λ_k .

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Nonlinear Functions

Problem: $\min_{x \in \mathbb{R}^n} f(x)$.

Convex Broyden Method

Given $x_0 \in \mathbb{R}^n$, set $G_0 = LI$, and iterate for $k \ge 0$:

- ② Set $G_{k+1} = \operatorname{Broyd}_{\tau}(G_k, J_k, u_k)$, where $u_k := x_{k+1} - x_k$, $J_k := \int_0^1 \nabla^2 f(x_k + tu_k) dt$.

Main difficulty (compared to quadratic case): J_k changes with k.

But locally all Hessians are close to each other:

For any
$$x, y \in \mathbb{R}^n$$
, $J := \int_0^1 \nabla^2 f(x + t(y - x)) dt$, $r := \|y - x\|_x$, $z \in \{x, y\}$,
$$(1 + Mr)^{-1} \nabla^2 f(x) \leq \nabla^2 f(y) \leq (1 + Mr) \nabla^2 f(x),$$

$$(1 + \frac{1}{2}Mr)^{-1} \nabla^2 f(z) \leq J \leq (1 + \frac{1}{2}Mr) \nabla^2 f(z).$$

Proof Idea

Local gradient norm: $\lambda_k := \|\nabla f(x_k)\|_{x_k}^*$.

Denote $\xi_k := \exp(M \sum_{i=0}^{k-1} r_i) \ (\geq 1)$, where $r_k := \|u_k\|_{x_k}$.

For all $k \ge 1$, we have

$$\xi_{k}^{-1} \nabla^{2} f(x_{k}) \leq G_{k} \leq (\xi_{k} \varkappa) \nabla^{2} f(x_{k}), \qquad \xi_{k+1}^{-1} J_{k} \leq G_{k} \leq (\xi_{k+1} \varkappa) J_{k},
\lambda_{k} \leq q^{k} \sqrt{\xi_{k}} \lambda_{0},
\lambda_{k} \leq \left[\varkappa_{k} \left((\xi_{k+1}^{\xi_{k+1}} \varkappa)^{13n/(6k)} - 1 \right) \right]^{k/2} \sqrt{\xi_{k} \varkappa} \lambda_{0},$$

for
$$q := \max\{1 - (\xi_k \varkappa)^{-1}, \xi_k - 1\}, \ \varkappa_k := (1 + \xi_k)(1 - \tau + \tau \xi_k^{-2} \varkappa^{-1})^{-1}.$$

- For a quadratic function, we had $M=0 \implies \xi_k \equiv 1$.
- **Goal:** Prove that $\xi_k \leq \xi$, $\forall k \geq 0$, assuming λ_0 is small enough.
- Suffices to prove by induction: $r_k \leq \xi_k \lambda_k \leq O(\rho^k \lambda_0)$ for $\rho \in (0,1)$.

- Introduction
 - Optimization problems
 - Gradient method
 - Newton's method
 - Quasi-Newton (QN) methods
 - Classical results on QN methods
- Modern local analysis of QN methods
 - Problem formulation and assumptions
 - Final complexity bound
 - Proof technique: preliminaries
 - Two main properties of convex Broyden updates
 - Analysis for quadratic functions
 - Nonlinear functions
 - Conclusions

Conclusion

- We finally have some complexity bounds for QN methods.
- Theory confirms (well-known) superiority of BFGS over DFP.
- Complexity result for BFGS is very attractive:

$$\min \left\{ \underbrace{ \times \ln O(\epsilon^{-1})}_{\text{Complexity of Gradient method}}, \underbrace{O(n \ln(2\varkappa))}_{\text{Start of super.}} + \ln O(\epsilon^{-1}) \right\}.$$

Still many interesting open questions:

- Optimality of our results.
- Choice of initial matrix (line search?).
- Global complexity bounds.
- Limited-memory QN methods (L-BFGS).
- Application to Interior-Point methods.
- Composite optimization.
- Acceleration.

Thank you!

References I

- C. G. Broyden, J. E. Dennis Jr, and J. Moré. On the local and superlinear convergence of quasi-Newton methods. *IMA Journal of Applied Mathematics*, 12(3):223–245, 1973.
- R. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. *SIAM Journal on Numerical Analysis*, 26(3):727–739, 1989.
- A. R. Conn, N. I. Gould, and P. L. Toint. *Trust Region Methods*. SIAM, 2000.
- W. Davidon. Variable metric method for minimization. Technical report 5990, Argonne National Laboratory, 1959.
- R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization. *Computer Journal*, 6(2):163–168, 1963.
 - S. M. Goldfeld, R. E. Quandt, and H. F. Trotter. Maximization by quadratic hill-climbing. *Econometrica: Journal of the Econometric Society*:541–551, 1966.

References II

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. *Journal of the Society for Industrial and Applied Mathematics*, 11(2):431–441, 1963.

- Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance. *Mathematical Programming*, 108:177–205, 2006.
- M. J. D. Powell. Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In R. W. Cottle and C. E. Lemke, editors, *Nonlinear Programming, SIAM-AMS proceedings*, volume 9. American Mathematical Society, 1976.
 - A. Rodomanov and Y. Nesterov. Greedy Quasi-Newton Methods with Explicit Superlinear Convergence. *SIAM Journal on Optimization*, 31(1):785–811, 2021.

References III

A. Rodomanov and Y. Nesterov. New Results on Superlinear Convergence of Classical Quasi-Newton Methods. *Journal of Optimization Theory and Applications*, 188:744–769, 2021.

A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for classical quasi-Newton methods. *Mathematical Programming*, 194:159–190, 2022.