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Optimization Problems

Minimize a given function subject to certain constraints:

min
x∈Q

f (x),

where Q ⊆ Rn.

Many applications:

Machine Learning

Economics

Engineering

Telecommunications

Signal Processing

. . .
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Example: Machine Learning

Empirical loss minimization:

min
x

m∑
i=1

ℓ
(
bi , b̂(x , ai )

)
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Gradient Method

Problem: minx∈Rn f (x).

Gradient of a function: ∇f (x) =
(∂f (x)

∂xi

)n
i=1

(∈ Rn).

Gradient Method

xk+1 = xk − αk∇f (xk), k ≥ 0,

where αk ≥ 0 are certain “step sizes”.
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Example: Convergence Plot
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Example: Slow Convergence
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Convergence Theory for Gradient Method

Problem class: Strongly convex functions with Lipschitz gradient:

µI ⪯ ∇2f (x) ⪯ LI , ∀x ∈ Rn,

where ∇2f (x) =
(∂2f (x)
∂xi∂xj

)n
i ,j=1

(∈ Sn).

Main parameter: Condition number κ := L
µ (≥ 1).

Convergence rate: f (xk)− f ∗ ≤ (1− κ−1)k [f (x0)− f ∗].

Complexity bound

K (ϵ) = κ ln(ϵ−1)

iterations to find xk such that f (xk)− f ∗ ≤ ϵ[f (x0)− f ∗].
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Good and Bad Examples Revisited
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Newton’s Method

Problem: minx∈Rn f (x).

Newton’s Method

xk+1 = xk − [∇2f (xk)]
−1∇f (xk).

Interpretation: Automatic preconditioning (scaling) of Gradient Method.

Main idea: Minimize quadratic model around previous point:

f (x) ≈ f (xk) + ⟨∇f (xk), x − xk⟩+
1

2
⟨∇2f (xk)(x − xk), x − xk⟩.
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Newton’s Method: Convergence Rate

Main assumption: f is µ-strongly convex with L2-Lipschitz Hessian.

Local quadratic convergence:

∥∇f (xk+1)∥ ≤ L2
2µ2

∥∇f (xk)∥2.

Very fast convergence: rk+1 ≤ r2k (0.1 → 0.01 → 0.0001 → . . . ).

Complexity bound

When started sufficiently close to solution1, Newton’s method needs

K (ϵ) = log2 log2O(ϵ−1)

iterations to find xk such that f (xk)− f ∗ ≤ ϵ[f (x0)− f ∗].

1
1Specifically, when ∥∇f (x0)∥ ≤ O(µ2/L2).
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Globally Convergent Variants of Newton’s Method

Damped Newton’s Method:

xk+1 = xk − αk [∇2f (xk)]
−1∇f (xk),

where αk ∈ [0, 1] and αk → 1 as k → ∞.

Other variants:

Levenberg-Marquardt regularization (Levenberg, 1944; Marquardt, 1963).

Trust-region methods (Goldfeld et al., 1966; Conn et al., 2000).

Cubic regularization (Nesterov and Polyak, 2006):

xk+1 = argmin
x∈Rn

{
f (xk) + ⟨∇f (xk), x − xk⟩

+
1

2
⟨∇2f (xk)(x − xk), x − xk⟩+

Mk

6
∥x − xk∥3

}
= xk − (∇2f (xk) +

1
2Mk rk I )

−1∇f (xk), rk := ∥xk+1 − xk∥.
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Cost of One Iteration

Gradient Method: xk+1 = xk − αk∇f (xk):

Cost(∇f ) + O(n).

Newton’s Method: xk+1 = xk − αk [∇2f (xk)]
−1∇f (xk):

Cost(∇f ) + Cost(∇2f ) + O(n3).
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Example: Small Dimension
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Example: Large dimension
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Summary: Gradient Method vs Newton’s Method

Method Cheap iteration? Fast convergence?

Gradient Method Yes No
Newton’s Method No Yes

Can we have something in between?
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Quasi-Newton Methods (Davidon, 1959; Fletcher and Powell, 1963)

Problem: minx∈Rn f (x).

Quasi-Newton iteration

xk+1 = xk − αkHk∇f (xk),

where
Hk ≈ [∇2f (xk)]

−1.

Main question: How to update Hk at each iteration?
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Secant Equation

Goal: Update

H ≈ [∇2f (x)]−1 into H+ ≈ [∇2f (x+)]
−1

using the information computed at x and x+:

∇f (x) and ∇f (x+).

Secant equation

Choose H+ such that
H+γ = δ, (*)

where
δ := x+ − x , γ := ∇f (x+)−∇f (x).

Note: (*) is satisfied by J−1 for

J :=

∫ 1

0
∇2f (x + tδ)dt

(
≈ ∇2f (x+)

)
.
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Least Change Principle

Define some distance β(·, ·) between two (positive definite) matrices.

Least Change Problem

min
H+

{β(H,H+) : H+γ = δ}.
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Main Updating Formulas

Davidon–Fletcher–Powell (DFP):

H+ = DFP−1(H, δ, γ) := H − HγγTH

⟨γ,Hγ⟩
+

δδT

⟨γ, δ⟩
.

Broyden–Fletcher–Goldfarb–Shanno (BFGS):

H+ = BFGS−1(H, δ, γ) := H−HγδT + δγTH

⟨γ, δ⟩
+

(
⟨γ,Hγ⟩
⟨γ, δ⟩

+1

)
δδT

⟨γ, δ⟩
.

Note: Cost of each update is O(n2) (not O(n3)!).
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Summary: Quasi-Newton Methods

Approximate Newton’s Method without computing Hessian.

Very efficient in practice.

Can be extended to large-scale problems (L-BFGS).
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Classical Results on QN Methods

Local convergence (Broyden et al., 1973)

Suppose f is strongly convex with Lipschitz Hessian.
Consider either BFGS or DFP method with unit step sizes:

αk ≡ 1, ∀k ≥ 0.

Then, ∀ρ ∈ (0, 1), ∃δ1, δ2 > 0 such that, ∀(x0,H0) satisfying

∥x0 − x∗∥ ≤ δ1 and ∥H0 − [∇2f (x∗)]−1∥ ≤ δ2,

it holds that
∥xk+1 − x∗∥ ≤ ρ∥xk − x∗∥, ∀k ≥ 0.

Moreover, the rate of convergence is superlinear:

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.
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Classical Results on QN Methods II

Global convergence (Powell, 1976; Byrd and Nocedal, 1989)

Suppose f is strongly convex with Lipschitz gradient and Hessian.
Consider BFGS method with an appropriate line search2.
Then, for any x0 and H0, it holds that

lim
k→∞

xk = x∗.

Moreover, the rate of convergence is superlinear:

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

2
2One possible option is the standard backtracking line search: find the smallest

integer ik ≥ 0 such that αk = 2−ik satisfies

f (xk − αkHk∇f (xk)) ≤ f (xk)− c1αk⟨∇f (xk),Hk∇f (xk)⟩

for a certain fixed constant c1 ∈ (0, 1).
Anton Rodomanov Modern local analysis of QN methods March 13, 2023 25 / 44



Criticism

Classical results are only qualitative (nonexplicit and asymptotic).

No concrete efficiency estimates / complexity bounds.

Example (BFGS vs DFP):
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Classical results do not explain why BFGS is so much better.

Cannot use them to compare BFGS with other methods.

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 26 / 44



Outline

1 Introduction
Optimization problems
Gradient method
Newton’s method
Quasi-Newton (QN) methods
Classical results on QN methods

2 Modern local analysis of QN methods
Problem formulation and assumptions
Final complexity bound
Proof technique: preliminaries
Two main properties of convex Broyden updates
Analysis for quadratic functions
Nonlinear functions
Conclusions

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 26 / 44



Based on

Paper

A. Rodomanov and Y. Nesterov. New Results on Superlinear Convergence
of Classical Quasi-Newton Methods. Journal of Optimization Theory and
Applications, 188:744–769, 2021.

Related:

A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for
classical quasi-Newton methods. Mathematical Programming,
194:159–190, 2022.

A. Rodomanov and Y. Nesterov. Greedy Quasi-Newton Methods with
Explicit Superlinear Convergence. SIAM Journal on Optimization,
31(1):785–811, 2021.

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 27 / 44



Outline

1 Introduction
Optimization problems
Gradient method
Newton’s method
Quasi-Newton (QN) methods
Classical results on QN methods

2 Modern local analysis of QN methods
Problem formulation and assumptions
Final complexity bound
Proof technique: preliminaries
Two main properties of convex Broyden updates
Analysis for quadratic functions
Nonlinear functions
Conclusions

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 27 / 44



Classical QN Methods

Problem: minx∈Rn f (x).

Convex Broyden Class (τ ∈ [0, 1])

Broyd−1
τ (H, δ, γ) := (1− τ) BFGS−1(H, δ, γ) + τ DFP−1(H, δ, γ).

Remarks:

Contains both BFGS (τ = 0) and DFP (τ = 1).

Can be computed in O(n2) operations.

Convex Broyden Method

Choose x0 ∈ Rn, H0 ∈ Sn++. Iterate for k ≥ 0:

1 Set xk+1 := xk − Hk∇f (xk).

2 Compute δk := xk+1 − xk and γk := ∇f (xk+1)−∇f (xk).

3 Update Hk+1 := Broyd−1
τ (Hk , δk , γk).
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Problem Class

1 f is µ-strongly convex with L-Lipschitz gradient (µ, L > 0):

µI ⪯ ∇2f (x) ⪯ LI , ∀x ∈ Rn.

Condition number: κ := L
µ (≥ 1).

2 f is M-strongly self-concordant (M ≥ 0):

∇2f (x)−∇2f (y) ⪯ M∥x − y∥z∇2f (w), ∀x , y , z ,w ∈ Rn,

where ∥h∥z := ⟨∇2f (z)h, h⟩1/2.

Remarks:

Strong self-concordance =⇒ self-concordance.

1 + 2 ⇐⇒ 1 + L2-Lipschitz Hessian (M = L2/µ
3/2).

2 is an affine invariant property.

For quadratic functions, M = 0.
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Final Complexity Bound

Main quantity: “Starting moment of superlinear convergence”

K0 = O
(
nκτ ln(2κ)

)
, κτ := (1− τ + τ 4

9κ
−1)−1.

Assumptions:

Initial point x0 is suff. good: M∥∇f (x0)∥∗x0 ≤ max{O(κ−1),K−1
0 }.

Initial Hessian approximation: H0 :=
1
L I .

Complexity bound

K (ϵ) = min
{
κ lnO(ϵ−1)︸ ︷︷ ︸
Complexity of

Gradient method

,K0 + lnO(ϵ−1)
}
,

iterations to produce xk such that f (xk)− f ∗ ≤ ϵ[f (x0)− f ∗].
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Discussion

Method Complexity

BFGS min
{
κ lnO(ϵ−1),O

(
n ln(2κ)

)
+ lnO(ϵ−1)

}
DFP min

{
κ lnO(ϵ−1),O

(
nκ ln(2κ)

)
+ lnO(ϵ−1)

}
BFGS is almost insensitive to condition number κ.
For κ ≫ n, its total arithmetical complexity is essentially

O
(
n ln(2κ)

)
× O(n2) = O

(
n3 ln(2κ)

)
= Õ(n3)

(similar to one Newton’s step).

In contrast, for ill-conditioned problems (κ ≫ n), the superlinear
convergence of DFP may be of no practical use.
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Main Result

Local gradient norm: λk := ∥∇f (xk)∥∗xk .

Theorem. Let H0 =
1
L I and x0 be sufficiently close to solution:

Mλ0 ≤
ln(3/2)

(3/2)3/2
max{(2κ)−1, (K0 + 9)−1}, K0 := ⌈8nκτ ln(2κ)⌉,

where κτ := (1− τ + τ 4
9κ

−1)−1.Then, for all k ≥ 1, we have

λk ≤
(
1− (2κ)−1

)k√3
2 λ0,

λk ≤
[
5
2κτ

(
(2κ)13n/(6k) − 1

)]k/2√3
2κ λ0.
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From Gradient Norms to Function Values

For self-concordant functions, we have

λ2(x)

2 +Mλ(x)
≤ f (x)− f ∗ ≤ λ2(x)

2−Mλ(x)

for any x such that Mλ(x) < 2, where λ(x) := ∥∇f (x)∥∗x .
In particular, if Mλ(x) ≤ 1, then

1
3λ

2(x) ≤ f (x)− f ∗ ≤ λ2(x).

In our methods, Mλk ≤ 1 for all k ≥ 0. Thus,

λ2k ≤ (13ϵ)λ
2
0 =⇒ f (xk)− f ∗ ≤ ϵ[f (x0)− f ∗].
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Change of Notation

Direct QN update: For G ∈ Sn++, δ, γ ∈ Rn, define

Upd(G , δ, γ) := [Upd−1(G−1, δ, γ)]−1.

Explicit formulas:

BFGS(G , δ, γ) = G − GδδTG

⟨Gδ, δ⟩
+

γγT

⟨γ, δ⟩
,

DFP(G , δ, γ) = G − GδγT + γδTG

⟨γ, δ⟩
+
(⟨Gδ, δ⟩

⟨γ, δ⟩
+ 1

) γγT
⟨γ, δ⟩

.

Matrix-revealing form: For G ,A ∈ Sn++ and u ∈ Rn, define

Upd(G ,A, u) := Upd(G , u,Au).

Classical QN update:

u = x+ − x , A =

∫ 1

0
∇2f (x + tu)dt =⇒ Au = ∇f (x+)−∇f (x).
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Eigenvalue Property

Hereinafter, A,G ∈ Sn++, u ∈ Rn, τ ∈ [0, 1] are arbitrary and

G+ = Broydτ (G ,A, u).

Eigenvalue property

For any ξ, η ≥ 1, the following implication holds:

ξ−1A ⪯ G ⪯ ηA =⇒ ξ−1A ⪯ G+ ⪯ ηA.
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Quality of Approximation

Directional measure of closeness

ν(G ,A, u) :=
∥(G − A)u∥∗G+

∥u∥G
.

Here ∥u∥G := ⟨Gu, u⟩1/2, ∥s∥∗G+
:= ⟨s,G−1

+ s⟩1/2.

Note: If u = x+ − x = −G−1∇f (x) and A =
∫ 1
0 ∇2f (x + tu)dt, then

ν(G ,A, u) =
∥∇f (x+)∥∗G+

∥∇f (x)∥∗G

because Au = ∇f (x+)−∇f (x).

Our goal: Show that ν → 0 (and estimate the rate of convergence).
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Potential Function

Augmented Log-Det Barrier

For X ,Y ≻ 0, define

ψ(X ,Y ) := − ln detY + ln detX + ⟨X−1,Y − X ⟩,

where ⟨U,V ⟩ := tr(UV ) is the Frobenius inner product.

Remarks:

This is the Bregman divergence generated by d(X ) := − ln detX :

ψ(X ,Y ) = d(Y )− d(X )− ⟨∇d(X ),Y − X ⟩ ≥ 0.

First used in (Byrd and Nocedal, 1989) for the analysis of QN methods.
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Key Result

Key result

If ξ−1A ⪯ G ⪯ ηA for some ξ, η ≥ 1, then

ψ(G+,A) ≤ ψ(G ,A)− 6
13 ln(1 + δν2),

where δ := 1
1+ξ (1− τ + τ 1

ξη ) and ν := ν(G ,A, u).
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Minimizing Quadratic Function

Problem

min
x∈Rn

[
f (x) :=

1

2
⟨Ax , x⟩ − ⟨b, x⟩

]
,

where A ∈ Sn++ and b ∈ Rn.

Main assumption: µI ⪯ A ⪯ LI for some µ, L > 0.

Convex Broyden Method

Given x0 ∈ Rn, set G0 = LI , and iterate for k ≥ 0:

1 Set xk+1 = xk − G−1
k ∇f (xk).

2 Set Gk+1 = Broydτ (Gk ,A, uk) for uk := xk+1 − xk .

Accuracy measure: λk = ∥∇f (xk)∥∗A.
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Linear Convergence

Bounds on Hessian approximations: A ⪯ Gk ⪯ κA, ∀k ≥ 0.

Proof: Indeed, by construction

A ⪯ G0 = LI = κ(µI ) ⪯ κA,

and each subsequent update preserves these bounds.

Corollary (linear convergence): λk+1 ≤ (1− κ−1)λk , ∀k ≥ 0.

Proof: Recall that uk = xk+1 − xk = −G−1
k ∇f (xk). Hence,

∇f (xk+1) = ∇f (xk) + Auk = ∇f (xk)− AG−1
k ∇f (xk).

Therefore,

λk+1 ≡ ∥∇f (xk+1)∥∗A = ∥(A−1 − G−1
k )∇f (xk)∥∗A ≤ (1− κ−1)λk .

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 40 / 44



Superlinear Sonvergence

λk ≤ [κτ (κ13n/(6k) − 1)]k/2
√
κ λ0, ∀k ≥ 1,

where κτ := 2(1− τ + τκ−1)−1.

Proof: Using the key result, we get, for any i ≥ 0,

ϕ(νi ) :=
6
13 ln(1 + κτν

2
i ) ≤ ψi − ψi+1, νi =

gi+1

gi
,

where gi := ∥∇f (xi )∥∗Gi
and ψi := ψ(Gi ,A) ≥ 0. Hence,

k−1∑
i=0

ϕ(νi ) ≤ ψ0 ≤ n lnκ.

By convexity of t 7→ ln(1 + et), it follows that

n lnκ
k

≥ 1

k

k−1∑
i=0

ϕ(νi ) ≥ ϕ
([k−1∏

i=0

νi

]1/k)
= ϕ

([gk
g0

]1/k)
.

It remains to rearrange and connect gk with λk .
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Nonlinear Functions

Problem: minx∈Rn f (x).

Convex Broyden Method

Given x0 ∈ Rn, set G0 = LI , and iterate for k ≥ 0:

1 Set xk+1 = xk − G−1
k ∇f (xk).

2 Set Gk+1 = Broydτ (Gk , Jk , uk),

where uk := xk+1 − xk , Jk :=
∫ 1
0 ∇2f (xk + tuk)dt.

Main difficulty (compared to quadratic case): Jk changes with k .

But locally all Hessians are close to each other:

For any x , y ∈ Rn, J :=
∫ 1
0 ∇2f (x + t(y − x))dt, r := ∥y − x∥x , z ∈ {x , y},

(1 +Mr)−1∇2f (x) ⪯ ∇2f (y) ⪯ (1 +Mr)∇2f (x),

(1 + 1
2Mr)−1∇2f (z) ⪯ J ⪯ (1 + 1

2Mr)∇2f (z).
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Proof Idea

Local gradient norm: λk := ∥∇f (xk)∥∗xk .

Denote ξk := exp(M
∑k−1

i=0 ri ) (≥ 1), where rk := ∥uk∥xk .

For all k ≥ 1, we have

ξ−1
k ∇2f (xk) ⪯ Gk ⪯ (ξkκ)∇2f (xk), ξ−1

k+1Jk ⪯ Gk ⪯ (ξk+1κ)Jk ,

λk ≤ qk
√
ξk λ0,

λk ≤
[
κk

(
(ξ

ξk+1

k+1κ)
13n/(6k) − 1

)]k/2√
ξkκ λ0,

for q := max{1− (ξkκ)−1, ξk − 1}, κk := (1 + ξk)(1− τ + τξ−2
k κ−1)−1.

For a quadratic function, we had M = 0 =⇒ ξk ≡ 1.

Goal: Prove that ξk ≤ ξ, ∀k ≥ 0, assuming λ0 is small enough.

Suffices to prove by induction: rk ≤ ξkλk ≤ O(ρkλ0) for ρ ∈ (0, 1).
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Conclusion
We finally have some complexity bounds for QN methods.

Theory confirms (well-known) superiority of BFGS over DFP.

Complexity result for BFGS is very attractive:

min
{
κ lnO(ϵ−1)︸ ︷︷ ︸
Complexity of

Gradient method

,O
(
n ln(2κ)

)︸ ︷︷ ︸
Start of super.
convergence

+ lnO(ϵ−1)
}
.

Still many interesting open questions:

Optimality of our results.

Choice of initial matrix (line search?).

Global complexity bounds.

Limited-memory QN methods (L-BFGS).

Application to Interior-Point methods.

Composite optimization.

Acceleration.

Thank you!

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 44 / 44



References I

C. G. Broyden, J. E. Dennis Jr, and J. Moré. On the local and superlinear
convergence of quasi-Newton methods. IMA Journal of Applied
Mathematics, 12(3):223–245, 1973.

R. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton methods
with application to unconstrained minimization. SIAM Journal on
Numerical Analysis, 26(3):727–739, 1989.

A. R. Conn, N. I. Gould, and P. L. Toint. Trust Region Methods. SIAM,
2000.

W. Davidon. Variable metric method for minimization. Technical report
5990, Argonne National Laboratory, 1959.

R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for
minimization. Computer Journal, 6(2):163–168, 1963.

S. M. Goldfeld, R. E. Quandt, and H. F. Trotter. Maximization by
quadratic hill-climbing. Econometrica: Journal of the Econometric
Society:541–551, 1966.

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 44 / 44



References II

K. Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly of applied mathematics, 2(2):164–168, 1944.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the Society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and
its global performance. Mathematical Programming, 108:177–205, 2006.

M. J. D. Powell. Some global convergence properties of a variable metric
algorithm for minimization without exact line searches. In R. W. Cottle and
C. E. Lemke, editors, Nonlinear Programming, SIAM-AMS proceedings,
volume 9. American Mathematical Society, 1976.

A. Rodomanov and Y. Nesterov. Greedy Quasi-Newton Methods with
Explicit Superlinear Convergence. SIAM Journal on Optimization,
31(1):785–811, 2021.

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 44 / 44



References III

A. Rodomanov and Y. Nesterov. New Results on Superlinear Convergence
of Classical Quasi-Newton Methods. Journal of Optimization Theory and
Applications, 188:744–769, 2021.

A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for
classical quasi-Newton methods. Mathematical Programming,
194:159–190, 2022.

Anton Rodomanov Modern local analysis of QN methods March 13, 2023 44 / 44


	Introduction
	Optimization problems
	Gradient method
	Newton's method
	Quasi-Newton (QN) methods
	Classical results on QN methods

	Modern local analysis of QN methods
	Problem formulation and assumptions
	Final complexity bound
	Proof technique: preliminaries
	Two main properties of convex Broyden updates
	Analysis for quadratic functions
	Nonlinear functions
	Conclusions


