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Optimization Problems in Machine Learning



Optimization Problems

In Machine Learning (ML), we often deal with optimization problems:

f ∗ = min
x∈Rd

f (x),

where f : Rd → R is a certain “objective function”.
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Main Example: Empirical Risk Minmization

We are given a dataset D = {(ai , bi )}ni=1 of n objects: ai is the
“features” of object i and bi is a “label”.

Fix a certain model Φ which takes features a and has its own internal
parameters (= “weights”) x ∈ Rd and predicts a label b̂ = Φ(a; x).

Define a “loss function” L(b̂, b) which measures how close is the
prediction b̂ from the “true label” b.

Goal: Solve the following optimization problem:

min
x∈Rd

[
f (x) =

1

n

n∑
i=1

L(Φ(ai ; x), bi )︸ ︷︷ ︸
=:f (x ;ai ,bi )

]
.

Here f (x ; a, b) is the “loss”/“risk” of the model at object (a, b).
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Examples
(Least Squares) Regression problem, b ∈ R.

▶ Model: Φ(a; x) = ⟨ϕ(a), x⟩, where ϕ is a predefined feature transform.
▶ Loss function: L(b̂, b) = 1

2 (b̂ − b)2.
▶ Loss at object:

f (x ; a, b) = 1
2 (⟨ϕ(a), x⟩ − b)2.

(Logistic regression) Classification into k ≥ 2 classes,
b ≡ (b(1), . . . , b(k)), b(j) is the prob. that object belongs to class j .

▶ Model: Parameters x = (x (1), . . . , x (k)), x (j) ∈ Rdj , x (k) ≡ 0,

Φ(a; x) = b̂ ≡ (b̂(1), . . . , b̂(k)) with b̂(j) =
exp(⟨ϕj (a),x

(j)⟩)∑k
j′=1

exp(⟨ϕj′ (a),x
(j′)⟩) , where

ϕj are predefined feature transforms.
▶ Loss function: Cross-entropy L(b̂, b) = −

∑k
j=1 b

(j) ln b̂(j).
▶ Loss at object:

f (x ; a, b) = ln
( k∑

j=1

exp(⟨ϕj(a), x
(j)⟩)

)
−

k∑
j=1

b(j)⟨ϕj(a), x
(j)⟩.

(Deep Neural Networks, DNNs) Generalization of previous examples
learning feature transforms ϕj “on-the-fly”.
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Gradient Descent (GD)



Algorithm

Problem: minx∈Rd f (x).

GD algorithm

Iterate for k = 0, . . . ,T − 1:
xk+1 = xk − h∇f (xk).

Here ∇f (x) =
(
∂f
∂x1

(x), . . . , ∂f
∂xd

(x)
)
∈ Rd is the gradient of f at x ∈ Rd ,

and h > 0 is the “stepsize” of the method.

How to choose h? How fast does this method converge?
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Convex Functions
From now on, we assume the objective function f in our problem is convex:

Many basic ML models such as linear/logistic regression, SVM, etc.
are convex.

More advanced models such as DNNs are nonconvex, and we can only
guarantee the convergence to a local minimizer (which is often
sufficient in practice).

Nonconvex function behaves like a convex one around a local
minimizer, or when part of the variables are fixed.
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Smooth Functions

Function f is called L-smooth (L > 0) if its gra-
dient is L-Lipschitz:

∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥, ∀x , y ∈ Rd .

Equiv.: f (y) ≤ f (x)+⟨∇f (x), y−x⟩+L
2∥y−x∥2.

Equivalent definition: ∥∇2f (x)∥ ≤ L, ∀x ∈ Rd , where

∇2f (x) =
(

∂2f
∂xi∂xj

(x)
)d
i ,j=1

is the Hessian matrix.

Examples:

(Quadratic function) f (x) = 1
2⟨Ax , x⟩+ ⟨b, x⟩, A ∈ Sd++, b ∈ Rd

=⇒ L = λmax(A).

(Log-sum-exp) f (x) = log(
∑m

i=1 e
⟨aj ,x⟩) =⇒ L = ∥A∥2, where

A = [a1, . . . , am].
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Convergence Rate

Assumption: f is L-smooth.

Theorem (Section 2.1.5 in Nesterov 2018)

Consider GD with stepsize h = 1
L . Then, for any k, f (xk+1) ≤ f (xk) and

f (xT )− f ∗ ≤ LR2

T
,

where R = ∥x0 − x∗∥, x∗ is a minimizer of f .
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Main Drawback: Expensive Computations

Recall that, in ML problems, we typically solve

min
x∈Rd

[
f (x) =

1

n

n∑
i=1

fi (x)
]
,

where n is the number of objects and fi (x) is the loss at object i . In this
case, computing the exact gradient

∇f (x) =
1

n

n∑
i=1

∇fi (x)

is very expensive when n is big.

Natural idea: Approximate ∇f (x) by computing the average over only a
few (randomly selected) objects.
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Stochastic Gradient Method (SGD)



Stochastic Gradient Oracle (SGO)

SGO: Procedure taking x ∈ Rd and returning a random vector
g(x , ξ) ∈ Rd , where ξ is a random variable, g is a deterministic function,
such that g(x , ξ) is an unbiased estimate of ∇f (x):

Eξ[g(x , ξ)] = ∇f (x).

Main example: If f (x) = 1
n

∑n
i=1 fi (x), then

g(x , ξ) = ∇fξ(x), ξ ∼= Unif(1, . . . , n).

More generally, if f (x) = Eξ[F (x , ξ)], then g(x , ξ) = ∇xF (x , ξ).
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Variance of Stochastic Gradient

Variance: σ2
g (x) := Eξ[∥g(x , ξ)−∇f (x)∥2].

Mini-batching: Mini-batched version of g is an SGO gb defined by

gb(x , ξ[b]) =
1

b

b∑
j=1

g(x , ξb),

where ξ[b] = (ξ1, . . . , ξb) consists of b independent copies of ξ.

Key property: σ2
gb
(x) = 1

bσ
2
g (x).

Mini-batching is especially useful when gb can be computed in parallel.
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SGD Algorithm

Problem: f ∗ = minx∈Rd f (x), where f is given by an SGO g .

SGD

Iterate for k = 0, . . . ,T − 1:
gk = g(xk , ξk),

xk+1 = xk − hgk .

Here ξ0, . . . , ξT−1 are independent copies of ξ, and h > 0 is the stepsize of
the method.
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Convergence on Smooth Functions

Assumptions: f is L-smooth and σ2
g (x) ≤ σ2 ∀x ∈ Rd .

Output point: Either x̄T = 1
T

∑T−1
k=0 xk , or x̄T ∼= Unif(x0, . . . , xT−1).

Theorem (Section 4.1.2 in Lan 2020)

Consider SGD with stepsize h = 1
L+σ

R

√
T
, where R = ∥x0 − x∗∥. Then,

E[f (x̄T )]− f ∗ ≤ LR2

T
+

σR√
T
.

Note:

First term is the rate of GD.

Second term is due to stochastic noise and dominates when T is large
enough.

To accelerate convergence, we need to decrease σ (e.g., by
mini-batching).
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Nonsmooth Functions: Motivation

Many functions important in applications may be nonsmooth.
For example:

Robust regression (ai ∈ Rd , b ∈ R):

min
x∈Rd

{
f (x) =

1

n

n∑
i=1

|⟨ai , x⟩ − bi |
}
.
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SVM for binary classification (ai ∈ Rd , bi ∈ {−1, 1}):

min
∥x∥≤R

{
f (x) =

1

n

n∑
i=1

[1− bi ⟨ai , x⟩]+
}
,
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where R > 0 and [t]+ := max{t, 0} (also known as ReLU activation
function for neural networks).

These functions are not smooth but still rather regular. They are examples
of Lipschitz functions.
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Lipschitz Functions

Function f is called M-Lipschitz if

|f (x)− f (y)| ≤ M∥x − y∥, ∀x , y ∈ Rd .

Equivalent condition1: ∥∇f (x)∥ ≤ M, ∀x ∈ Rd .

1∇f (x) is an arbitrary subgradient of f at x if f is not differentible at this point.
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Convergence Rate for Nonsmooth Functions

Assumptions: f is M-Lipschitz and σ2
g (x) ≤ σ2 ∀x ∈ Rd .

Theorem (Section 4.1.1 in Lan 2020)

Consider SGD with stepsize h = R
(M+σ)

√
T
, where R = ∥x0 − x∗∥. Then,

E[f (x̄T )]− f ∗ ≤ MR√
T

+
σR√
T
.

Reminder: For L-smooth functions, we needed to choose h = 1
L+σ

R

√
T

and

the rate was O(LR
2

T + σR√
T
).
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Intermediate Smoothness: Hölder Class
Lipschitz-smooth and nonsmooth Lipschitz functions are particular
subclasses of the more general class of Hölder-smooth functions.
Function f is called (ν,Hν)-Hölder smooth (ν ∈ [0, 1] and Hν > 0) if

∥∇f (x)−∇f (y)∥ ≤ Hν∥x − y∥ν , ∀x , y ∈ Rd .

Lipschitz-smooth functions (ν = 1): ∥∇f (x)−∇f (y)∥ ≤ H1∥x − y∥.
Lipschitz functions (ν = 0): ∥∇f (x)−∇f (y)∥ ≤ H0 (H0 = 2M)

Example: f (x) =
n∑

i=1
|⟨ai , x⟩ − bi |p (p ∈ [1, 2]) =⇒ ν = p − 1.
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Convergence of SGD on Hölder-Smooth Functions

Assumptions: f is (ν,Hν)-Hölder smooth and σ2
g (x) ≤ σ2 ∀x ∈ Rd .

Theorem

Consider SGD with stepsize h ∼ 1
Hν

R1−ν T
1−ν
2 +σ

R

√
T
, where R = ∥x0 − x∗∥.

Then,

E[f (x̄T )]− f ∗ ≲
HνR

1+ν

T
1+ν
2

+
σR√
T
.
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Overparameterized Models

Modern ML models (especially DNNs) are often overparameterized2:
their number of parameters exceed the amount of training data, and
the model can achieve (nearly) zero training loss.

For such models, SGD works especially well, and convergence
becomes comparable to GD while the cost of iteration is still
significantly smaller.

2Cotter et al. 2011; Schmidt and Roux 2013; Needell et al. 2014; Ma et al. 2018; Liu
and Belkin 2018; Necoara et al. 2019
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Variance at Minimizer

To quantify how well the model fits the training data we can use the
variance at the minimizer:

σ2
∗ := σ2

g (x
∗) ≡ Eξ[∥g(x , ξ)∥2].

Example: Let f (x) = 1
n

∑n
i=1 fi (x) and consider the “standard SGO”3

g(x , ξ) = ∇fξ(x). Then,

σ2
∗ =

1

n

n∑
i=1

∥∇fi (x
∗)∥2.

If there exists a solution x∗ such that it minimizes each loss function fi , we
have ∇fi (x

∗) = 0 and σ∗ = 0.

Main property: If each fi is Lmax-smooth, then

σ2
g (x) ≤ 4Lmax[f (x)− f ∗] + 2σ2

∗.

The first term in the above expression goes to zero as f (x) → f ∗.

3We could also use mini-batching but we do not do it for simplicity.
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Convergence on Smooth Overparameterized Models

Assumptions: f (x) ≡ 1
n

∑n
i=1 fi (x) with Lmax-smooth components fi ,

standard SGO g .

Theorem

Consider SGD with stepsize h ∼ 1
Lmax+

σ∗
R

√
T
, where R = ∥x0 − x∗∥. Then,

E[f (x̄T )]− f ∗ ≲
LmaxR

2

T
+

σ∗R√
T
.

Discussion:

Previously, we had a similar result but with σ instead of σ∗ and L
instead of Lmax.

If σ∗ = 0, we can use a nearly constant step size h ∼ 1
Lmax

and get the
LmaxR2

T convergence, which is similar to GD but each iteration is much
cheaper.
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Convergence on Hölder-Smooth Overparameterized Models

Assumptions: f (x) ≡ 1
n

∑n
i=1 fi (x) with (ν,Hmax(ν))-Hölder smooth

components, standard SGO g .

Theorem

Consider SGD with stepsize h ∼ 1
Hmax(ν)

R1−ν T
1−ν
2 +σ∗

R

√
T
, where R = ∥x0 − x∗∥.

Then,

E[f (x̄T )]− f ∗ ≲
Hmax(ν)R

1+ν

T
1+ν
2

+
σ∗R√
T
.
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Summary

Case Stepsize Rate

M-Lipschitz, σ-variance M+σ
R
√
T

MR
T + σR√

T

L-smooth, σ-variance 1
L+σ

R

√
T

LR2

T + σR√
T

(ν,Hν)-Hölder, σ-variance
1

Hν
R1−ν T

1−ν
2 +σ

R

√
T

HνR
1+ν

T
1+ν
2

+ σR√
T

(ν,Hmax(ν))-Hölder components 1
Hmax(ν)

R1−ν T
1−ν
2 +σ∗

R

√
T

Hmax(ν)R
1+ν

T
1+ν
2

+ σ∗R√
T

We will see next that adaptive methods such as AdaGrad can achieve all
of this automatically (almost without tuning stepsize).
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Adaptive Methods: AdaGrad



Classical AdaGrad

AdaGrad algorithm [Duchi et al. 2011]

Set S−1 = 0 and iterate for k = 0, . . . ,T − 1:
gk = g(xk , ξk),

S2
k = S2

k−1 + g2
k ,

xk+1 = xk − γ
gk
Sk

.

Here γ > 0 is a parameter. All operations on vectors are component-wise.

NB: S2
k =

∑k
t=0 g

2
t is the summation of squared gradients.
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Adam [Kingma and Ba 2015]

Heuristical improvement over AdaGrad that often works well in practice.

Set m−1 = 0, S−1 = 0 and iterate for k = 0, . . . ,T − 1:

gk = g(xk , ξk),

mk = β1mk−1 + (1− β1)gk , m̂k =
mk

1− βk+1
1

,

S2
k = β2S

2
k−1 + (1− β2)g

2
k , Ŝ2

k =
S2
k

1− βk+1
2

,

xk+1 = xk − α
m̂k

Ŝk
.

NB: mk = (1− β1)
∑k

t=0 β
k−t
1 gt and S2

k = (1− β2)
∑k

t=0 β
k−t
2 g2

t .

c.f.: heavy-ball method xk+1 = xk − αgk + β(xk − xk−1) which can be
written as xk+1 = xk − α

∑k
t=0 β

k−tgt .
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AdaGrad: Scalar Version

In what follows, we concentrate on the scalar AdaGrad method.

Scalar AdaGrad algorithm (also known as AdaGrad-Norm)

Set S−1 = 0 and iterate for k = 0, . . . ,T − 1:
gk = g(xk , ξk),

S2
k = S2

k−1 + ∥gk∥2,

xk+1 = xk −
γ

Sk
gk ,

This is a simplification but sufficient to illustrate main points.

Diagonal version is a natural “per-coordinate” extension of this idea.
It approximates the gradient method xk+1 = xk − B−1gk with the
fixed diagonal matrix B. This can be good in situations such as

[∇2f (x)]ii ≤ Lj with different Lj . E.g., if f (x) =
1
2

d∑
j=1

(ajx
(j) − bj)

2,

then a good scaling is Bjj = Lj = aj .
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AdaGrad with Projection

We introduce one more “minor modification” and consider from now on
the following “safeguarded” version of AdaGrad:

xk+1 = πB(x0,R)

(
xk −

γ

Sk
gk

)
, S2

k =
k∑

t=0

∥gt∥2,

where πBR
(·) is the projection onto the ball B(x0,R):

πBR
(x) =

{
x , if ∥x − x0∥ ≤ R,

x0 + R x−x0
∥x−x0∥ , otherwise,

where R ∼ ∥x0 − x∗∥.

Output point: Either x̄T = 1
T

∑T−1
k=0 xk , or x̄T ∼= Unif(x0, . . . , xT−1)

(same as for SGD).
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Convergence on Smooth and Nonsmooth Functions

Assumption: σ2
g (x) ≤ σ2 ∀x ∈ Rd .

Theorem (Levy et al. 2018)

Consider AdaGrad with γ = R, where R ∼ ∥x0 − x∗∥.
If f is M-Lipschitz, then

E[f (x̄T )]− f ∗ ≲
MR√
T

+
σR√
T
.

If f is L-smooth, then

E[f (x̄T )]− f ∗ ≲
LR2

T
+

σR√
T
.

NB: With the same parameter γ = R, AdaGrad works both for smooth
and nonsmooth functions! And we don’t even need to know M, L or σ (as
in SGD).
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Convergence on Hölder-Smooth Problems

Assumptions: f is (ν,Hν)-Hölder smooth and σ2
g (x) ≤ σ2 ∀x ∈ Rd .

Theorem (Rodomanov et al. 2024)

Consider AdaGrad with γ = R, where R ∼ ∥x0 − x∗∥. Then,

E[f (x̄T )]− f ∗ ≲
HνR

1+ν

T
1+ν
2

+
σR√
T
.

NB: This is exactly the same convergence rate as we had for SGD with
the carefully chosen stepsize (depending on ν, Hν , R and σ).
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Overparameterized Hölder-Smooth Problems

Assumptions: f (x) ≡ 1
n

∑n
i=1 fi (x), where each fi is (ν,Hmax(ν))-Hölder

smooth, standard SGO g .

Theorem (Rodomanov et al. 2024)

Consider AdaGrad with γ = R, where R ∼ ∥x0 − x∗∥. Then,

E[f (x̄T )]− f ∗ ≲
Hmax(ν)R

1+ν

T
1+ν
2

+
σ∗R√
T
,

where σ∗ := σg (x
∗).

NB: This is again the same convergence rate as for SGD, without any
knowledge of ν, Hmax(ν) or σ∗.
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Summary: Comparison with SGD

Case Stepsize for SGD γ in AdaGrad Rate

M-Lipschitz,
σ-variance

M+σ
R
√
T

R MR
T + σR√

T

L-smooth, σ-variance 1
L+σ

R

√
T

R LR2

T + σR√
T

(ν,Hν)-Hölder,
σ-variance

1
Hν

R1−ν T
1−ν
2 +σ

R

√
T

R HνR
1+ν

T
1+ν
2

+ σR√
T

(ν,Hmax(ν))-Hölder
components

1
Hmax(ν)

R1−ν T
1−ν
2 +σ∗

R

√
T

R Hmax(ν)R
1+ν

T
1+ν
2

+ σ∗R√
T
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Conclusions



Conclusions

Stepsize and convergence rate of SGD depend on many characteristic
of the specific problem: smoothness, variance, degree of
overparameterization, . . .

Adaptive methods such as AdaGrad reduce the knowledge of
parameters to one and are “universal”—they automatically adapt to
the best possible setting for a specific problem.

Our theory provides a possible explanation why adaptive methods
often perform well in practice.

Thank you!
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