Adaptive Gradient Methods for Stochastic Optimization

Anton Rodomanov (CISPA)

17 October 2024 Blue Yonder Series on Optimization for Machine Learning (online)

Outline

- Optimization Problems in Machine Learning
- ② Gradient Descent (GD)
- 3 Stochastic Gradient Method (SGD)
- 4 Adaptive Methods: AdaGrad
- Conclusions

Optimization Problems in Machine Learning

Optimization Problems

In Machine Learning (ML), we often deal with optimization problems:

$$f^* = \min_{x \in \mathbb{R}^d} f(x),$$

where $f: \mathbb{R}^d \to \mathbb{R}$ is a certain "objective function".

Main Example: Empirical Risk Minmization

- We are given a dataset $\mathcal{D} = \{(a_i, b_i)\}_{i=1}^n$ of n objects: a_i is the "features" of object i and b_i is a "label".
- Fix a certain model Φ which takes features a and has its own internal parameters (= "weights") $x \in \mathbb{R}^d$ and predicts a label $\hat{b} = \Phi(a; x)$.
- Define a "loss function" $L(\hat{b}, b)$ which measures how close is the prediction \hat{b} from the "true label" b.

Goal: Solve the following optimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^d} \left[f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \underbrace{L(\Phi(a_i; \mathbf{x}), b_i)}_{=:f(\mathbf{x}; a_i, b_i)} \right].$$

Here f(x; a, b) is the "loss" / "risk" of the model at object (a, b).

Examples

- (Least Squares) Regression problem, $b \in \mathbb{R}$.
 - ▶ Model: $\Phi(a; x) = \langle \phi(a), x \rangle$, where ϕ is a predefined feature transform.
 - Loss function: $L(\hat{b}, b) = \frac{1}{2}(\hat{b} b)^2$.
 - Loss at object:

$$f(x; a, b) = \frac{1}{2}(\langle \phi(a), x \rangle - b)^2.$$

- (Logistic regression) Classification into $k \ge 2$ classes, $b \equiv (b^{(1)}, \dots, b^{(k)}), b^{(j)}$ is the prob. that object belongs to class j.
 - Model: Parameters $x = (x^{(1)}, \dots, x^{(k)})$, $x^{(j)} \in \mathbb{R}^{d_j}$, $x^{(k)} \equiv 0$, $\Phi(a; x) = \hat{b} \equiv (\hat{b}^{(1)}, \dots, \hat{b}^{(k)})$ with $\hat{b}^{(j)} = \frac{\exp(\langle \phi_j(a), x^{(j)} \rangle)}{\sum_{j'=1}^k \exp(\langle \phi_{j'}(a), x^{(j')} \rangle)}$, where ϕ_j are predefined feature transforms.
 - ▶ Loss function: Cross-entropy $L(\hat{b}, b) = -\sum_{i=1}^{k} b^{(i)} \ln \hat{b}^{(i)}$.
 - Loss at object:

$$f(x; a, b) = \ln \left(\sum_{j=1}^k \exp(\langle \phi_j(a), x^{(j)} \rangle) \right) - \sum_{j=1}^k b^{(j)} \langle \phi_j(a), x^{(j)} \rangle.$$

• (Deep Neural Networks, DNNs) Generalization of previous examples learning feature transforms ϕ_i "on-the-fly".

Gradient Descent (GD)

Algorithm

Problem: $\min_{x \in \mathbb{R}^d} f(x)$.

GD algorithm

Iterate for $k = 0, \ldots, T - 1$:

$$x_{k+1} = x_k - h\nabla f(x_k).$$

Here $\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_d}(x)\right) \in \mathbb{R}^d$ is the gradient of f at $x \in \mathbb{R}^d$, and h > 0 is the "stepsize" of the method.

How to choose h? How fast does this method converge?

Convex Functions

From now on, we assume the objective function f in our problem is convex:

- Many basic ML models such as linear/logistic regression, SVM, etc. are convex.
- More advanced models such as DNNs are nonconvex, and we can only guarantee the convergence to a local minimizer (which is often sufficient in practice).
- Nonconvex function behaves like a convex one around a local minimizer, or when part of the variables are fixed.

Smooth Functions

Function f is called L-smooth (L > 0) if its gradient is L-Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \qquad \forall x, y \in \mathbb{R}^d.$$

Equiv.:
$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$$
.

Equivalent definition:
$$\|\nabla^2 f(x)\| \le L$$
, $\forall x \in \mathbb{R}^d$, where $\nabla^2 f(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{i,j=1}^d$ is the Hessian matrix.

Examples:

- (Quadratic function) $f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle$, $A \in \mathbb{S}^d_{++}$, $b \in \mathbb{R}^d$ $\implies L = \lambda_{\max}(A)$.
- (Log-sum-exp) $f(x) = \log(\sum_{i=1}^m e^{\langle a_j, x \rangle}) \implies L = ||A||^2$, where $A = [a_1, \dots, a_m]$.

Convergence Rate

Assumption: *f* is *L*-smooth.

Theorem (Section 2.1.5 in Nesterov 2018)

Consider GD with stepsize $h = \frac{1}{L}$. Then, for any k, $f(x_{k+1}) \leq f(x_k)$ and

$$f(x_T)-f^*\leq \frac{LR^2}{T},$$

where $R = ||x_0 - x^*||$, x^* is a minimizer of f.

Main Drawback: Expensive Computations

Recall that, in ML problems, we typically solve

$$\min_{x \in \mathbb{R}^d} \left[f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right],$$

where n is the number of objects and $f_i(x)$ is the loss at object i. In this case, computing the exact gradient

$$\nabla f(x) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x)$$

is very expensive when n is big.

Natural idea: Approximate $\nabla f(x)$ by computing the average over only a few (randomly selected) objects.

Stochastic Gradient Method (SGD)

Stochastic Gradient Oracle (SGO)

SGO: Procedure taking $x \in \mathbb{R}^d$ and returning a random vector $g(x,\xi) \in \mathbb{R}^d$, where ξ is a random variable, g is a deterministic function, such that $g(x,\xi)$ is an unbiased estimate of $\nabla f(x)$:

$$\mathbb{E}_{\xi}[g(x,\xi)] = \nabla f(x).$$

Main example: If $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, then

$$g(x,\xi) = \nabla f_{\xi}(x), \qquad \xi \cong \mathsf{Unif}(1,\ldots,n).$$

More generally, if $f(x) = \mathbb{E}_{\xi}[F(x,\xi)]$, then $g(x,\xi) = \nabla_x F(x,\xi)$.

Variance of Stochastic Gradient

Variance: $\sigma_g^2(x) := \mathbb{E}_{\xi}[\|g(x,\xi) - \nabla f(x)\|^2].$

Mini-batching: Mini-batched version of g is an SGO g_b defined by

$$g_b(x, \xi_{[b]}) = \frac{1}{b} \sum_{j=1}^b g(x, \xi_b),$$

where $\xi_{[b]} = (\xi_1, \dots, \xi_b)$ consists of b independent copies of ξ .

Key property: $\sigma_{g_b}^2(x) = \frac{1}{b}\sigma_g^2(x)$.

Mini-batching is especially useful when g_b can be computed in parallel.

SGD Algorithm

Problem: $f^* = \min_{x \in \mathbb{R}^d} f(x)$, where f is given by an SGO g.

SGD

Iterate for $k=0,\ldots,T-1$: $g_k=g(x_k,\xi_k),$ $x_{k+1}=x_k-hg_k.$

Here ξ_0, \dots, ξ_{T-1} are independent copies of ξ , and h > 0 is the stepsize of the method.

Convergence on Smooth Functions

Assumptions: f is L-smooth and $\sigma_g^2(x) \leq \sigma^2 \ \forall x \in \mathbb{R}^d$.

Output point: Either $\bar{x}_T = \frac{1}{T} \sum_{k=0}^{T-1} x_k$, or $\bar{x}_T \cong \text{Unif}(x_0, \dots, x_{T-1})$.

Theorem (Section 4.1.2 in Lan 2020)

Consider SGD with stepsize $h = \frac{1}{L + \frac{\sigma}{R} \sqrt{T}}$, where $R = \|x_0 - x^*\|$. Then,

$$\mathbb{E}[f(\bar{x}_T)] - f^* \leq \frac{LR^2}{T} + \frac{\sigma R}{\sqrt{T}}.$$

Note:

- First term is the rate of GD.
- Second term is due to stochastic noise and dominates when T is large enough.
- To accelerate convergence, we need to decrease σ (e.g., by mini-batching).

Nonsmooth Functions: Motivation

Many functions important in applications may be nonsmooth. For example:

• Robust regression ($a_i \in \mathbb{R}^d$, $b \in \mathbb{R}$):

$$\min_{x \in \mathbb{R}^d} \Big\{ f(x) = \frac{1}{n} \sum_{i=1}^n |\langle a_i, x \rangle - b_i| \Big\}.$$

• SVM for binary classification $(a_i \in \mathbb{R}^d, b_i \in \{-1, 1\})$:

$$\min_{\|x\| \leq R} \Big\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} [1 - b_i \langle a_i, x \rangle]_+ \Big\},$$

where R > 0 and $[t]_+ := \max\{t, 0\}$ (also known as ReLU activation function for neural networks).

These functions are not smooth but still rather regular. They are examples of Lipschitz functions.

Lipschitz Functions

Function f is called M-Lipschitz if

$$|f(x) - f(y)| \le M||x - y||, \quad \forall x, y \in \mathbb{R}^d.$$

Equivalent condition¹: $\|\nabla f(x)\| \leq M$, $\forall x \in \mathbb{R}^d$.

 $^{{}^{1}\}nabla f(x)$ is an arbitrary subgradient of f at x if f is not differentiable at this point.

Convergence Rate for Nonsmooth Functions

Assumptions: f is M-Lipschitz and $\sigma_g^2(x) \leq \sigma^2 \ \forall x \in \mathbb{R}^d$.

Theorem (Section 4.1.1 in Lan 2020)

Consider SGD with stepsize $h = \frac{R}{(M+\sigma)\sqrt{T}}$, where $R = \|x_0 - x^*\|$. Then,

$$\mathbb{E}[f(\bar{x}_T)] - f^* \leq \frac{MR}{\sqrt{T}} + \frac{\sigma R}{\sqrt{T}}.$$

Reminder: For *L*-smooth functions, we needed to choose $h=\frac{1}{L+\frac{\sigma}{R}\sqrt{T}}$ and the rate was $O(\frac{LR^2}{T}+\frac{\sigma R}{\sqrt{T}})$.

Intermediate Smoothness: Hölder Class

Lipschitz-smooth and nonsmooth Lipschitz functions are particular subclasses of the more general class of Hölder-smooth functions. Function f is called (ν, H_{ν}) -Hölder smooth $(\nu \in [0,1]$ and $H_{\nu} > 0)$ if

$$\|\nabla f(x) - \nabla f(y)\| \le H_{\nu} \|x - y\|^{\nu}, \qquad \forall x, y \in \mathbb{R}^d.$$

- Lipschitz-smooth functions $(\nu = 1)$: $\|\nabla f(x) \nabla f(y)\| \le H_1 \|x y\|$.
- Lipschitz functions $(\nu = 0)$: $\|\nabla f(x) \nabla f(y)\| \le H_0$ $(H_0 = 2M)$

Example:
$$f(x) = \sum_{i=1}^{n} |\langle a_i, x \rangle - b_i|^p \ (p \in [1, 2]) \implies \nu = p - 1.$$

Convergence of SGD on Hölder-Smooth Functions

Assumptions: f is (ν, H_{ν}) -Hölder smooth and $\sigma_g^2(x) \leq \sigma^2 \ \forall x \in \mathbb{R}^d$.

Theorem

Consider SGD with stepsize
$$h \sim \frac{1}{\frac{H_{\nu}}{R^{1-\nu}}T^{\frac{1-\nu}{2}} + \frac{\sigma}{R}\sqrt{T}}$$
, where $R = \|x_0 - x^*\|$.

Then,

$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{H_{\nu}R^{1+\nu}}{T^{\frac{1+\nu}{2}}} + \frac{\sigma R}{\sqrt{T}}.$$

Overparameterized Models

- Modern ML models (especially DNNs) are often overparameterized²: their number of parameters exceed the amount of training data, and the model can achieve (nearly) zero training loss.
- For such models, SGD works especially well, and convergence becomes comparable to GD while the cost of iteration is still significantly smaller.

 $^{^2}$ Cotter et al. 2011; Schmidt and Roux 2013; Needell et al. 2014; Ma et al. 2018; Liu and Belkin 2018; Necoara et al. 2019

Variance at Minimizer

To quantify how well the model fits the training data we can use the variance at the minimizer:

$$\sigma_*^2 := \sigma_g^2(x^*) \equiv \mathbb{E}_{\xi}[\|g(x,\xi)\|^2].$$

Example: Let $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ and consider the "standard SGO" $g(x,\xi) = \nabla f_{\xi}(x)$. Then, $\sigma_*^2 = \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x^*)\|^2.$

If there exists a solution x^* such that it minimizes each loss function f_i , we have $\nabla f_i(x^*) = 0$ and $\sigma_* = 0$.

Main property: If each f_i is L_{max} -smooth, then

$$\sigma_g^2(x) \le 4L_{\max}[f(x) - f^*] + 2\sigma_*^2.$$

The first term in the above expression goes to zero as $f(x) \to f^*$.

³We could also use mini-batching but we do not do it for simplicity.

Convergence on Smooth Overparameterized Models

Assumptions: $f(x) \equiv \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ with L_{max} -smooth components f_i , standard SGO g.

Theorem

Consider SGD with stepsize
$$h \sim \frac{1}{L_{\text{max}} + \frac{\sigma_*}{R} \sqrt{T}}$$
, where $R = \|x_0 - x^*\|$. Then,
$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{L_{\text{max}} R^2}{T} + \frac{\sigma_* R}{\sqrt{T}}.$$

Discussion:

- Previously, we had a similar result but with σ instead of σ^* and L instead of L_{\max} .
- If $\sigma_*=0$, we can use a nearly constant step size $h\sim \frac{1}{L_{\max}}$ and get the $\frac{L_{\max}R^2}{T}$ convergence, which is similar to GD but each iteration is much cheaper.

Convergence on Hölder-Smooth Overparameterized Models

Assumptions: $f(x) \equiv \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ with $(\nu, H_{\text{max}}(\nu))$ -Hölder smooth components, standard SGO g.

Theorem

Consider SGD with stepsize $h \sim \frac{1}{\frac{H_{\text{max}}(\nu)}{R^{1-\nu}}T^{\frac{1-\nu}{2}} + \frac{\sigma_*}{R}\sqrt{T}}$, where $R = \|x_0 - x^*\|$.

Then,

$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{H_{\mathsf{max}}(\nu)R^{1+\nu}}{T^{\frac{1+\nu}{2}}} + \frac{\sigma_*R}{\sqrt{T}}.$$

Summary

Case	Stepsize	Rate
<i>M</i> -Lipschitz, σ -variance	$\frac{M+\sigma}{R\sqrt{T}}$	$\frac{MR}{T} + \frac{\sigma R}{\sqrt{T}}$
\emph{L} -smooth, σ -variance	$\frac{1}{L + \frac{\sigma}{R}\sqrt{T}}$	$\frac{LR^2}{T} + \frac{\sigma R}{\sqrt{T}}$
$(u, H_{ u})$ -Hölder, σ -variance	$\frac{\frac{1}{1}}{\frac{H_{\nu}}{R^{1-\nu}}T^{\frac{1-\nu}{2}} + \frac{\sigma}{R}\sqrt{T}}$	$\frac{H_{\nu}R^{1+\nu}}{T^{\frac{1+\nu}{2}}} + \frac{\sigma R}{\sqrt{T}}$
$(\nu, H_{\sf max}(\nu))$ -Hölder components	$\frac{1}{\frac{H_{max}(\nu)}{R^{1-\nu}}T^{\frac{1-\nu}{2}} + \frac{\sigma_*}{R}\sqrt{T}}$	$rac{H_{max}(u)R^{1+ u}}{T^{rac{1+ u}{2}}}+rac{\sigma_*R}{\sqrt{T}}$

We will see next that adaptive methods such as AdaGrad can achieve all of this automatically (almost without tuning stepsize).

Adaptive Methods: AdaGrad

Classical AdaGrad

AdaGrad algorithm [Duchi et al. 2011]

Set
$$S_{-1}=0$$
 and iterate for $k=0,\ldots,T-1$:
$$g_k=g(x_k,\xi_k),$$

$$S_k^2=S_{k-1}^2+g_k^2,$$

$$x_{k+1}=x_k-\gamma\frac{g_k}{S_k}.$$

Here $\gamma > 0$ is a parameter. All operations on vectors are component-wise.

NB: $S_k^2 = \sum_{t=0}^k g_t^2$ is the summation of squared gradients.

Adam [Kingma and Ba 2015]

Heuristical improvement over AdaGrad that often works well in practice.

Set
$$m_{-1}=0$$
, $S_{-1}=0$ and iterate for $k=0,\ldots,T-1$:
$$g_k=g(x_k,\xi_k),$$

$$m_k=\beta_1 m_{k-1}+(1-\beta_1)g_k, \qquad \hat{m}_k=\frac{m_k}{1-\beta_1^{k+1}},$$

$$S_k^2=\beta_2 S_{k-1}^2+(1-\beta_2)g_k^2, \qquad \hat{S}_k^2=\frac{S_k^2}{1-\beta_2^{k+1}},$$

$$x_{k+1}=x_k-\alpha\frac{\hat{m}_k}{\hat{S}_k}.$$

NB:
$$m_k = (1 - \beta_1) \sum_{t=0}^k \beta_1^{k-t} g_t$$
 and $S_k^2 = (1 - \beta_2) \sum_{t=0}^k \beta_2^{k-t} g_t^2$.

c.f.: heavy-ball method $x_{k+1} = x_k - \alpha g_k + \beta (x_k - x_{k-1})$ which can be written as $x_{k+1} = x_k - \alpha \sum_{t=0}^k \beta^{k-t} g_t$.

AdaGrad: Scalar Version

In what follows, we concentrate on the scalar AdaGrad method.

Scalar AdaGrad algorithm (also known as AdaGrad-Norm)

Set
$$S_{-1}=0$$
 and iterate for $k=0,\ldots,T-1$:
$$g_k=g(x_k,\xi_k),$$

$$S_k^2=S_{k-1}^2+\|g_k\|^2,$$

$$x_{k+1}=x_k-\frac{\gamma}{S_k}g_k,$$

- This is a simplification but sufficient to illustrate main points.
- Diagonal version is a natural "per-coordinate" extension of this idea. It approximates the gradient method $x_{k+1} = x_k B^{-1}g_k$ with the fixed diagonal matrix B. This can be good in situations such as $[\nabla^2 f(x)]_{ii} \leq L_j$ with different L_j . E.g., if $f(x) = \frac{1}{2} \sum_{j=1}^d (a_j x^{(j)} b_j)^2$, then a good scaling is $B_{ji} = L_i = a_i$.

AdaGrad with Projection

We introduce one more "minor modification" and consider from now on the following "safeguarded" version of AdaGrad:

$$x_{k+1} = \pi_{B(x_0,R)} \left(x_k - \frac{\gamma}{S_k} g_k \right), \quad S_k^2 = \sum_{t=0}^k ||g_t||^2,$$

where $\pi_{B_R}(\cdot)$ is the projection onto the ball $B(x_0, R)$:

$$\pi_{B_R}(x) = \begin{cases} x, & \text{if } \|x - x_0\| \le R, \\ x_0 + R \frac{x - x_0}{\|x - x_0\|}, & \text{otherwise}, \end{cases}$$

where $R \sim ||x_0 - x^*||$.

Output point: Either $\bar{x}_T = \frac{1}{T} \sum_{k=0}^{T-1} x_k$, or $\bar{x}_T \cong \text{Unif}(x_0, \dots, x_{T-1})$ (same as for SGD).

Convergence on Smooth and Nonsmooth Functions

Assumption: $\sigma_g^2(x) \leq \sigma^2 \ \forall x \in \mathbb{R}^d$.

Theorem (Levy et al. 2018)

Consider AdaGrad with $\gamma = R$, where $R \sim ||x_0 - x^*||$.

If f is M-Lipschitz, then

$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{MR}{\sqrt{T}} + \frac{\sigma R}{\sqrt{T}}.$$

If f is L-smooth, then

$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{LR^2}{T} + \frac{\sigma R}{\sqrt{T}}.$$

NB: With the same parameter $\gamma=R$, AdaGrad works both for smooth and nonsmooth functions! And we don't even need to know M, L or σ (as in SGD).

Convergence on Hölder-Smooth Problems

Assumptions: f is (ν, H_{ν}) -Hölder smooth and $\sigma_g^2(x) \leq \sigma^2 \ \forall x \in \mathbb{R}^d$.

Theorem (Rodomanov et al. 2024)

Consider AdaGrad with $\gamma = R$, where $R \sim ||x_0 - x^*||$. Then,

$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{H_{\nu}R^{1+\nu}}{T^{\frac{1+\nu}{2}}} + \frac{\sigma R}{\sqrt{T}}.$$

NB: This is exactly the same convergence rate as we had for SGD with the carefully chosen stepsize (depending on ν , H_{ν} , R and σ).

Overparameterized Hölder-Smooth Problems

Assumptions: $f(x) \equiv \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, where each f_i is $(\nu, H_{\text{max}}(\nu))$ -Hölder smooth, standard SGO g.

Theorem (Rodomanov et al. 2024)

Consider AdaGrad with $\gamma = R$, where $R \sim ||x_0 - x^*||$. Then,

$$\mathbb{E}[f(\bar{x}_T)] - f^* \lesssim \frac{H_{\mathsf{max}}(\nu)R^{1+\nu}}{T^{\frac{1+\nu}{2}}} + \frac{\sigma_*R}{\sqrt{T}},$$

where $\sigma_* := \sigma_g(x^*)$.

NB: This is again the same convergence rate as for SGD, without any knowledge of ν , $H_{\text{max}}(\nu)$ or σ_* .

Summary: Comparison with SGD

Case	Stepsize for SGD	γ in AdaGrad	Rate
M -Lipschitz, σ -variance	$\frac{M+\sigma}{R\sqrt{T}}$	R	$\frac{MR}{T} + \frac{\sigma R}{\sqrt{T}}$
\emph{L} -smooth, σ -variance	$\frac{1}{L + \frac{\sigma}{R}\sqrt{T}}$	R	$\frac{LR^2}{T} + \frac{\sigma R}{\sqrt{T}}$
$(u, H_{ u})$ -Hölder, σ -variance	$\frac{1}{\frac{H_{\nu}}{R^{1-\nu}}T^{\frac{1-\nu}{2}} + \frac{\sigma}{R}\sqrt{T}}$	R	$\frac{H_{\nu}R^{1+\nu}}{T^{\frac{1+\nu}{2}}} + \frac{\sigma R}{\sqrt{T}}$
$(u, H_{\sf max}(u))$ -Hölder components	$\frac{1}{\frac{H_{\max}(\nu)}{R^{1-\nu}}T^{\frac{1-\nu}{2}} + \frac{\sigma_*}{R}\sqrt{T}}$	R	$rac{H_{max}(u)R^{1+ u}}{T^{rac{1+ u}{2}}}+rac{\sigma_*R}{\sqrt{T}}$

Conclusions

- Stepsize and convergence rate of SGD depend on many characteristic of the specific problem: smoothness, variance, degree of overparameterization, . . .
- Adaptive methods such as AdaGrad reduce the knowledge of parameters to one and are "universal"—they automatically adapt to the best possible setting for a specific problem.
- Our theory provides a possible explanation why adaptive methods often perform well in practice.

Thank you!

References I

- A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms via accelerated gradient methods. Advances in Neural Information Processing Systems, 24, 2011.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12(7), 2011.
- D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (ICLR), 2015.
- G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. Volume 1. Springer, 2020.
- K. Y. Levy, A. Yurtsever, and V. Cevher. Online Adaptive Methods, Universality and Acceleration. Advances in Neural Information Processing Systems, 31, 2018.

References II

- C. Liu and M. Belkin. Accelerating SGD with momentum for over-parameterized learning. arXiv preprint arXiv:1810.13395, 2018.
- S. Ma, R. Bassily, and M. Belkin. The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning. In International Conference on Machine Learning, pages 3325–3334, 2018.
- I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-strongly convex optimization. **Mathematical Programming**, 175:69–107, 2019.
- D. Needell, R. Ward, and N. Srebro. Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz Algorithm. Advances in Neural Information Processing Systems, 27, 2014.
- Y. Nesterov. Lectures on Convex Optimization. Volume 137. Springer, 2nd edition, 2018.

References III

A. Rodomanov, X. Jiang, and S. Stich. Universality of AdaGrad Stepsizes for Stochastic Optimization: Inexact Oracle, Acceleration and Variance Reduction. arXiv preprint arXiv:2406.06398, 2024.

M. Schmidt and N. L. Roux. Fast Convergence of Stochastic Gradient Descent under a Strong Growth Condition. arXiv preprint arXiv:1308.6370, 2013.