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Stochastic gradient method (SGD)
Problem: Find x∗ ∈ Q such that f (x∗) = minx∈Q f (x).
1. Q is a nonempty convex compact set in Rn;
2. f : Q → R is a subdifferentiable convex function.

Stochastic gradient method (SGD)
1. Choose a starting point x1 ∈ Q;
2. Iterate for t = 1, 2, . . . :

(a) Choose a random gt in Rn such that E(gt | xt) ∈ ∂f (xt).
(b) Set xt+1 := πQ(xt − αtgt) for some αt ≥ 0.

Theorem (Convergence rate of SGD)
Suppose there exists M ≥ 0 such that E‖gt‖2 ≤ M2 for all
t ≥ 1. Let D := supx ,y∈Q ‖x − y‖ be the diameter of Q, and
let αt :=

D
M
√
t

for all t ≥ 1. Also let T ≥ 1, and let

xT := 1
T

∑T
k=1 xk . Then

Ef (xT )− f (x∗) ≤ 3DM
2
√
T
.
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The AdaGrad method [Duchi et al., 2011]
Problem: Find x∗ ∈ Q such that f (x∗) = minx∈Q f (x).

AdaGrad

1. Choose a starting point x1 ∈ Q;
2. Iterate for t = 1, 2, . . . :

(a) Choose a random gt in Rn such that E(gt | xt) ∈ ∂f (xt).
(b) Set xt+1 := πQ,Bt (xt − αB−1

t gt) for some α ≥ 0 and
Bt := Diag(

∑t
k=1 g

2
k )

1/2.

Theorem (Convergence rate of AdaGrad)
Suppose there exists M1, . . . ,Mn ≥ 0 such that Eg2

t,j ≤ M2
j for

all 1 ≤ j ≤ n and all t ≥ 1. Let D∞ := supx ,y∈Q ‖x − y‖∞ be
the l∞ diameter of Q, and let α := D∞. Also let T ≥ 1, and
let xT := 1

T

∑T
k=1 xk . Then

Ef (xT )− f (x∗) ≤ 3D∞
2
√
T

n∑
j=1

Mj .
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Compare SGD and AdaGrad

SGD:
3DM
2
√
T
. AdaGrad:

3D∞
2
√
T

n∑
j=1

Mj ,

where E‖g‖2 ≤ M2, Eg2
j ≤ M2

j .

I AdaGrad is efficient when D∞
∑n

j=1 Mj ≤ DM.

I Usually we have M = (
∑n

j=1 M
2
j )

1/2.
I By Cauchy-Schwarz,

∑n
j=1 Mj ≤

√
nM.

I AdaGrad is efficient when
√
nD∞ ≤ D (e.g. Q = [−1, 1]n).

For the case
√
nD∞ = D (e.g. Q = [−1, 1]n),

AdaGrad is faster than SGD in 1 ≤
√
nM∑n

j=1 Mj
≤
√
n times.
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Example: Robust regression

Let Q := [−1, 1]n, and let f : Q → R be the function

f (x) :=
1
m

m∑
i=1

|〈ai , x〉 − bi |,

where a1, . . . , am ∈ Rn, b1, . . . , bm ∈ R.

I At x ∈ Q, the vector
g := sign(〈aî , x〉 − bî )aî , î ≡ Unif{1, . . . ,m}

satisfies Eg ∈ ∂f (x).
I For any 1 ≤ j ≤ n, one has

Eg2
j =

1
m

m∑
i=1

sign(〈ai , x〉 − bi )
2a2

i ,j ≤
1
m

m∑
i=1

a2
i ,j = M2

j .

I Thus, Mj is the mean square in the jth column of A.

AdaGrad is efficient when A has many columns with small mean
squares (e.g. sparse columns).



6/11

The Adam method [Kingma, Ba, 2014]
Adam

1. Choose a starting point x1 ∈ Q; set m0 := 0; v0 := 0;
2. Iterate for t = 1, 2, . . . :

(a) Choose a random gt in Rn such that E(gt | xt) ∈ ∂f (xt).
(b) Set mt := β1mt−1 + (1− β1)gt for some 0 ≤ β1 < 1;
(c) Set vt := β2vt−1 + (1− β2)g

2
t for some 0 ≤ β2 < 1;

(d) Set xt+1 := πQ,Bt (xt − αtB
−1
t mt) for Bt := Diag(vt)

1/2

and some αt ≥ 0.

I Note that

mt = (1− β1)
t∑

k=1

βt−k1 gk , vt = (1− β2)
t∑

k=1

βt−k2 g2
k .

I Compare with the heavy ball method
xt+1 := xt − αgt + β(xt − xt−1)

which can be written as

xt+1 = xt − α
t∑

k=1

βt−kgk .
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Correcting Adam [Reddi et al., 2018]

The proof technique of SGD/AdaGrad/Adam exploits the
monotonicity

Bt

αt
� Bt−1

αt−1
.

AMSGrad

1. Choose a starting point x1 ∈ Q.
2. Set m0 := 0; v0 := 0; v̂0 := 0.
3. Iterate for t = 1, 2, . . . :

(a) Choose a random gt in Rn such that E(gt | xt) ∈ ∂f (xt).
(b) Set mt := β1tmt−1 + (1− β1t)gt for some 0 ≤ β1t < 1;
(c) Set vt := β2vt−1 + (1− β2)g

2
t for some 0 ≤ β2 < 1;

(d) Set v̂t := max{v̂t−1, vt};
(e) Set xt+1 := πQ,Bt (xt − αtB

−1
t mt) for Bt := Diag(v̂t)

1/2

and some αt ≥ 0.
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Convergence rate of AMSGrad [ICLR 2018 paper]

Theorem (Convergence rate of AMSGrad)
Suppose there exists M1, . . . ,Mn ≥ 0 such that Eg2

t,j ≤ M2
j for

all 1 ≤ j ≤ n and all t ≥ 1. Let D∞ := supx ,y∈Q ‖x − y‖∞ be
the l∞ diameter of Q. Let β1, β2, (β1t)

∞
t=1, (αt)

∞
t=1 be

deterministic such that 0 < β1, β2 < 1, γ := β1√
β2
< 1,

β11 = β1 and β1t ≤ β1 for all t ≥ 1. Also let T ≥ 1, and let
xT := 1

T

∑T
k=1 xk . Then

Ef (xT )− f (x∗) ≤ D2
∞

2(1− β1)TαT

n∑
j=1

Ev̂1/2
T ,j

+
D2
∞

2(1− β1)T

T∑
t=1

β1t

αt

n∑
j=1

Ev̂1/2
t,j

+
1√

1− β2(1− γ)T

T∑
t=1

αt

n∑
j=1

E

(
t∑

k=1

βt−k2 g2
k,j

)1/2
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Convergence rate of AMSGrad (continued)

Best scenario: v̂ = v . The bound becomes

Ef (xT )− f (x∗) ≤ D2
∞
√
1− β2

2(1− β1)TαT

n∑
j=1

E

(
T∑
t=1

βT−t2 g2
t,j

)1/2

+
D2
∞
√
1− β2

2(1− β1)T

T∑
t=1

β1t

αt

n∑
j=1

E

(
t∑

k=1

βt−k2 g2
k,j

)1/2

+
1√

1− β2(1− γ)T

T∑
t=1

αt

n∑
j=1

E

(
t∑

k=1

βt−k2 g2
k,j

)1/2

≤ D2
∞

2(1− β1)TαT

n∑
j=1

Mj +
D2
∞

2(1− β1)T

T∑
t=1

β1t

αt

n∑
j=1

Mj

+
1

(1− β2)(1− γ)T

T∑
t=1

αt

n∑
j=1

Mj .
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Convergence rate of AMSGrad (continued 2)

I For the recommended choice αt := α/
√
t and β1t := β1/t,

the bound becomes

Ef (xT )−f (x∗) ≤
(

3D2
∞

2(1− β1)α
+

2α
(1− β2)(1− γ)

)
1√
T

n∑
j=1

Mj

I With the best α :=
√

3D∞
√

(1−β2)(1−γ)
2
√

1−β1
this is

2
√
3√

(1− β1)(1− β2)(1− γ)
D∞√
T

n∑
j=1

Mj .

I This is always worse than the corresponding AdaGrad bound
3D∞
2
√
T

n∑
j=1

Mj .

The difference is an absolute multiplicative constant.
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Conclusion

I For the sets with favourable geometry (
√
nD∞ ≤ D) adaptive

stochastic gradient methods may be much more efficient than
the basic non-adaptive SGD. The difference can reach

√
n

times.
I From the theoretical point of view, the more "complex" Adam

method (or its corrections such as AMSGrad) are no better or
even strictly worse than the AdaGrad method.

I There are no theoretical results for the non-convex
smooth problems for adaptive gradient methods (however, in
many cases, they seem to work well in practice).

Thank you!


