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Problem Formulation

Consider the composite optimization problem:

F ∗ := min
x∈domψ

[
F (x) := f (x) + ψ(x)

]
, (P)

where f : Rn → R and ψ : Rn → R ∪ {+∞} are convex, ψ is simple.

Assumptions: (∥·∥ is a Euclidean norm, ν ∈ [0, 1])

1 Hölder smoothness: ∥∇f (x)−∇f (y)∥∗ ≤ Lν∥x − y∥ν, ∀x , y ∈ domψ.

2 Unbiased stochastic oracle: Eξ[g(x , ξ)] = ∇f (x), ∀x ∈ domψ.

3 Bounded variance: Eξ[∥g(x , ξ)−∇f (x)∥2∗] ≤ σ2, ∀x ∈ domψ.

Goal: Develop methods that can solve (P) without knowing ν, Lν and σ.

We do so assuming additionally domψ is bounded with known diameter:

4 Bounded domain: ∥x − y∥ ≤ D, ∀x , y ∈ domψ.

Note: Asm. 4 can always be ensured with D = 2R0 whenever we know
R0 ≥ ∥x0 − x∗∥ by replacing (P) with F ∗ = minx[f (x) + ψD(x)], where
ψD = ψ + IndB0

with B0 = {x : ∥x − x0∥ ≤ R0}.

Classical Universal Gradient Methods (UGMs)

UGM (Nesterov 2015): xk+1 = argmin
x

{⟨∇f (xk), x⟩ + ψ(x) + Hk

2 ∥x − xk∥2},
where Hk is found by line search to satisfy the following condition:

f (xk+1) ≤ f (xk) + ⟨∇f (xk), xk+1 − xk⟩ + Hk

2 ∥xk+1 − xk∥2 + ϵ
2.

Efficiency bound: O
(
inf

ν∈[0,1]
[Lνϵ ]

2
1+νR2

0

)
iterations to reach F (x∗k )− F ∗ ≤ ϵ,

where R0 = ∥x0 − x∗∥ and x∗k is the iterate with the smallest value of F .

Accelerated version (Nesterov 2015): O
(
inf

ν∈[0,1]
[
LνR

1+ν
0

ϵ ]
2

1+3νR2
0

)
.

Main problem: UGMs do not work properly with the stochastic oracle.

AdaGrad Methods

Suppose that ψ = IndQ for a simple convex set Q.

AdaGrad (McMahan and Streeter 2010; Duchi et al. 2011): (gk = g(xk, ξk))

xk+1 = ProjQ(xk − hkgk), hk =
D√∑k
i=0∥gi∥2∗

.

Convergence rate (Levy et al. 2018): If ∇f (x∗) = 0, then

E[f (x̄k)]− f ∗ ≤ O

(
min

{M0D√
k
,
L1D

2

k

}
+
σD√
k

)
,

where M0 and L1 are the Lipschitz constants of f and ∇f , respectively.
UniXGrad (Kavis et al. 2019): Accelerated version of AdaGrad
accumulating ∥gi+1 − gi∥2∗ instead of ∥gi∥2∗. Convergence rate:

O

(
min

{M0D√
k
,
L1D

2

k2

}
+
σD√
k

)
.

Question: Do AdaGrad methods work for the entire Hölder class?

Basic Method

Algorithm Universal Stochastic Gradient Method (USGM)

Initialize: x0 ∈ domψ, D > 0, H0 = 0, g0 = g(x0, ξ0).
for k = 0, 1, . . . do

xk+1 = argminx
{
⟨gk, x⟩ + ψ(x) + Hk

2 ∥x − xk∥2
}
, gk+1 = g(xk+1, ξk+1).

Hk+1 = Hk +
[β̂k+1−1

2Hkr
2
k+1]+

D2+1
2r

2
k+1

with

{
rk+1 = ∥xk+1 − xk∥,
β̂k+1 = ⟨gk+1 − gk, xk+1 − xk⟩.

Theorem: For any k ≥ 1 and x̄k =
1
k

∑k
i=1 xi , we have

E[F (x̄k)]− F ∗ ≤ inf
ν∈[0,1]

8LνD
1+ν

k
1+ν
2

+
4σD√

k
.

It suffices to make O
(
inf

ν∈[0,1]
[Lνϵ ]

2
1+νD2 + σ2D2

ϵ2

)
oracle calls to reach ϵ-accuracy.

Main Idea and Outline of Analysis

Opt. condition for xk+1 gives (for dk = ∥xk − x∗∥, rk+1 = ∥xk+1 − xk∥)
f (xk) + ⟨gk, xk+1 − xk⟩ + ψ(xk+1) +

Hk

2 r
2
k+1 +

Hk

2 d
2
k+1

≤ f (xk) + ⟨gk, x∗ − xk⟩ + ψ(x∗) + Hk

2 d
2
k .

Use Eξk[f (xk) + ⟨gk, x∗ − xk⟩]= f (xk) + ⟨∇f (xk), x
∗ − xk⟩≤ f (x∗) to get

E
[
Fk+1 +

Hk

2 d
2
k+1

]
≤ E

[
Hk

2 d
2
k + βk+1 − Hk

2 r
2
k+1

]
,

where Fk+1 = F (xk+1)− F ∗, βk+1 = f (xk+1)− f (xk)− ⟨gk, xk+1 − xk⟩.
To make dk-terms telescope, require that Hk ≤ Hk+1 and estimate

E
[
Fk+1 +

Hk+1

2 d 2
k+1

]
≤ E

[
Hk

2 d
2
k + βk+1 − Hk

2 r
2
k+1 +

Hk+1−Hk

2 d 2
k+1

]
≤ E

[
Hk

2 d
2
k + βk+1 − Hk+1

2 r 2k+1 + (Hk+1 − Hk)D
2
]
.

Main idea: balance the two error terms by choosing Hk+1 from equation

(Hk+1 − Hk)D
2 =

[
β̂k+1 − Hk+1

2 r 2k+1
]
+
, (*)

where β̂k+1 is such that E[βk+1] ≤ E[β̂k+1] (see Alg. for explicit solution
and note that βk+1 ≤ ⟨∇f (xk+1)− gk, xk+1 − xk⟩ = Eξk+1[β̂k+1] ).
We thus get E[Fk+1 + Hk+1

2 d 2
k+1] ≤ E[Hk

2 d
2
k+1 + 2(Hk+1 − Hk)D

2], and so

E[F (x̄k)]− F ∗ ≤ E
[
1
k

∑k
i=1 Fi

]
≤ 2E[Hk]D

2

k .

To estimate growth rate of Hk, we first estimate

β̂k+1 ≡ ⟨∇f (xk+1)−∇f (xk) + ∆k+1, xk+1 − xk⟩ ≤ Lνr
1+ν
k+1 + σk+1rk+1,

where ∆k = δk+1 − δk, δk = gk−∇f (xk), σk=∥∆k∥∗ (note: E[σ2k] ≤ 2σ2).
Substituting this into (*) gives the following recurrence:

(Hk+1 − Hk)D
2 ≲ (1−ν)L

2
1−ν
ν

H
1+ν
1−ν
k+1

+
σ2k+1
Hk+1

.

Its solution is Hk ≤ O
(

Lν
D1−νk

1−ν
2 + 1

D(
∑k

i=1 σ
2
i )

1
2

)
, so

E[Hk] ≤ O
(

Lν
D1−νk

1−ν
2 + σ

D

√
k
)
.

Accelerated Algorithm

Algorithm Universal Stochastic Fast Gradient Method (USFGM)
Initialize: x0 = v0 ∈ domψ, D > 0, H0 = A0 = 0.
for k = 0, 1, . . . do

ak+1 = k + 1, Ak+1 = Ak + ak+1.
yk =

Ak

Ak+1
xk +

ak+1
Ak+1

vk, g y
k = g(yk, ξ

y
k ).

vk+1 = argminx{ak+1[⟨g
y
k , x⟩ + ψ(x)] + Hk

2 ∥x − vk∥2}.
xk+1 =

Ak

Ak+1
xk +

ak+1
Ak+1

vk+1, g x
k+1 = g(xk+1, ξ

x
k+1).

Hk+1 = Hk +
[Ak+1β̂k+1−1

2Hkr
2
k+1]+

D2+1
2r

2
k+1

with

{
rk+1=∥vk+1 − vk∥,
β̂k+1=⟨g x

k+1 − g y
k , xk+1 − yk⟩.

Theorem: For any k ≥ 1, it holds that

E[F (xk)]− F ∗ ≤ inf
ν∈[0,1]

32LνD
1+ν

k
1+3ν
2

+
8σD√
3k
.

It suffices to make O
(
inf

ν∈[0,1]
[LνD

1+ν

ϵ ]
2

1+3ν + σ2D2

ϵ2

)
oracle calls to reach ϵ-accuracy.

xk yk vk

xk+1

vk+1

Experiments

Least squares: min
∥x∥≤1

1
2∥Ax − b∥2. Logistic regression: min

∥x∥≤1

m∑
i=1

ln(1+ e−bi⟨ai ,x⟩).

Neural network training:

3-layer fully connected on MNIST ResNet18 on CIFAR-10
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