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Motivating Example

Spectral linear regression problem:

φ∗ := min
x∈Rd

[φ(x) := ‖Ax − C‖∞], Ax :=
d∑
i=1

xiAi ,

where A1, . . . ,Ad ,C ∈ Rn×m and ‖·‖∞ is the spectral norm (Schatten `∞).

Can be reduced to SDP problem and solved by Interior-Point methods.

However, this approach works only when all matrices are small.

Can we provably solve this problem for large matrices using cheaper
gradient methods?

Stochastic Optimization in Relative Scale

Consider the following problem:

f ∗ := min
x∈Q

f (x),

where f : E→ R is a convex function and Q ⊆ E is a simple convex set.

f is consistent with some Euclidean seminorm ‖x‖B := 〈Bx , x〉1/2:

f (x) ≥ γ0‖x − x0‖2
B, ∀x ∈ E.

We have access to unbiased stochastic subgradient oracle g(x , ξ):

Eξ[g(x , ξ)] ∈ ∂f (x), ∀x ∈ E.
The size of g(x , ξ) w.r.t. f (x) is bounded:

Eξ[(‖g(x , ξ)‖∗B)2] ≤ 2Lf (x), ∀x ∈ E.

Stochastic Gradient Method

Input: Point x0, oracle g , norm B , step size h, number of iterations N .
Initialize x̄0 := x0.
for k = 0, 1, . . . ,N − 1 do

Sample ξk, compute gk := g(xk, ξk)
x̄k+1 := (1− τk)x̄k + τkxk for τk := 1/(k + 1)
xk+1 := GradStepQ,B(xk, hgk)

return x̄N . = 1
N

∑N−1
k=0 xk by construction

This algorithm uses the following gradient step operation:

GradStepQ,B(x , g) := argmin
y∈Q

{
〈g , y〉 +

1

2
‖y − x‖2

B

}
,

where x ∈ E and g ∈ (kerB)⊥.

When B � 0, this is a standard projected gradient step (w.r.t. B-norm):

GradStepQ,B(x , g) = ProjQ,B(x − B−1g),

where ProjQ,B(x) := argminy∈Q‖y − x‖B.

When Q = E, point T := GradStepQ,B(x , g) is a solution of linear system

B(T − x) = −g .

Convergence Guarantees

Point x̄N is an approximate solution to our problem in relative scale:

(1− δN)E[f (x̄N)] ≤ f ∗, δN :=
1 + 2γ0Lh

2N

1 + 2γ0hN
.

A (nearly) optimal choice of step size is

h∗ =
1√

2γ0NL
=⇒ δ∗N =

√
2L

γ0N
.

Alternatively, we can tune the step size to the target accuracy δ ∈ (0, 1):

h∗ =
δ

2L
=⇒ δ∗N ≤ δ ∀N ≥ N(δ) :=

2L

γ0δ2
.

In many applications, one does not need high accuracy: δ ∈ [0.01, 0.05].

Application: Spectral Linear Regression

Without loss of generality, assume that n ≤ m.

Let us square the objective function:

(φ∗)2 = min
x∈Rd

[f (x) := φ2(x) = F (Ax − C )], F (X ) := ‖X‖2
∞.

This problem needs to be solved with accuracy δ2 := δ(2− δ) to obtain a
δ-approximate solution to the original problem.

Choose B as the Gram matrix:

B := A∗A = (〈Ai ,Aj〉),
and x0 by solving the linear regression problem:

x0 := argmin
x∈Rd

‖Ax − C‖2
F = GradStepB(0,−A∗C ).

Then, f is consistent with the seminorm with constant

γ0 =
1

n
.

Oracle g(x , ξ) can be naturally chosen as follows:

g(x , ξ) := A∗G (Ax − C , ξ),

provided that we know a suitable oracle G (X , ξ) for F (unbiased and
L-bounded w.r.t. F in the Frobenius norm).

Power Iteration Oracle

Function F has the following subgradient:

F ′(X ) := 2v(X )[v(X )]TX ∈ ∂F (X ),

where v(X ) ∈ Sn−1 is a leading unit eigenvector of XX T .

To approximate v(X ), we can use standard Power Method of degree q:

v(X ) ≈ v qu (X ) :=
(XX T)qu

‖(XX T)qu‖
, u ∼ Unif(Sn−1).

This gives us oracle G (x , u) with L = 2. However, this oracle is biased, so
we have no theoretical guarantees.

Our New Oracle for Squared Spectral Norm

Introduce convex probabilistic approximation of F of degree p ≥ 1:

Fp(X ) := Eu[〈(XX T)pu, u〉1/p], u ∼ Unif(Sn−1).

We can quantify how close Fp is to F depending on p:

βpF (X ) ≤ Fp(X ) ≤ F (X ), βp :=
p

p + 2

(
1

n

)1/p

.

For any odd p = 2q + 1, we have unbiased stochastic oracle for Fp:

Gp(X , u) := 2v̂ qu (X )[v̂ qu (X )]TX , v̂ qu (X ) :=
(XX T)qu

〈(XX T)2q+1u, u〉q/(2q+1)
.

This oracle is bounded w.r.t. F with constant Lp := 2/βp.

Instead of f , we can now minimize fp(x) := Fp(Ax − C ) using oracle Gp

and choosing oracle degree p = 2q + 1 sufficiently large:

βp ≥ 1− δ2/2 ⇐= q = b(ln n + 2)/δ2c.
The final worst-case iteration complexity bound is

Np(δ) :=
8β2

pLp

γ0δ2
2

=
16βpn

δ2
2

≤ 16n

δ2
.

Numerical Experiments

δ = 0.01

Dense data

d n m p Np(δ)

50 100 200
663 4000269

200 100 200
100 200 400

773 8000577400 200 400
800 200 400

Sparse data (5 nnz / column)

d n m p Np(δ)

1000 500 1000
825 20001419

2000 500 1000
2000 1000 2000

895 40002992
4000 1000 2000
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In all cases, performance is much better than predicted by theory.

Comparison of two oracles:

Almost identical =⇒
theoretical guarantees for
Power Iteration Oracle?
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