Randomized Minimization of Eigenvalue Functions

Yurii Nesterov Anton Rodomanov Catholic University of Louvain (UCLouvain), Belgium

Motivating Example

Spectral linear regression problem:

$$\phi^* \coloneqq \min_{x \in \mathbb{R}^d} [\phi(x) \coloneqq \|Ax - C\|_{\infty}], \qquad Ax \coloneqq \sum_{i=1}^d x_i A_i,$$

where $A_1, \ldots, A_d, C \in \mathbb{R}^{n \times m}$ and $\|\cdot\|_{\infty}$ is the spectral norm (Schatten ℓ_{∞}).

- Can be reduced to SDP problem and solved by Interior-Point methods.
- However, this approach works only when all matrices are small.
- Can we provably solve this problem for large matrices using cheaper gradient methods?

Stochastic Optimization in Relative Scale

Consider the following problem:

$$f^* \coloneqq \min_{x \in Q} f(x),$$

where $f: \mathbb{E} \to \mathbb{R}$ is a convex function and $Q \subseteq \mathbb{E}$ is a simple convex set.

• f is consistent with some Euclidean seminorm $||x||_B := \langle Bx, x \rangle^{1/2}$:

$$f(x) \geq \gamma_0 ||x - x_0||_B^2, \quad \forall x \in \mathbb{E}.$$

• We have access to unbiased stochastic subgradient oracle $g(x, \xi)$:

$$\mathbb{E}_{\xi}[g(x,\xi)] \in \partial f(x), \quad \forall x \in \mathbb{E}.$$

■ The size of $g(x, \xi)$ w.r.t. f(x) is bounded:

$$\mathbb{E}_{\xi}[(\|g(x,\xi)\|_B^*)^2] \leq 2Lf(x), \quad \forall x \in \mathbb{E}.$$

Stochastic Gradient Method

Input: Point x_0 , oracle g, norm B, step size h, number of iterations N. Initialize $\bar{x}_0 := x_0$.

for
$$k = 0, 1, ..., N - 1$$
 do

Sample ξ_k , compute $g_k \coloneqq g(x_k, \xi_k)$

 $ar{x}_{k+1}\coloneqq (1- au_k)ar{x}_k+ au_kx_k ext{ for } au_k\coloneqq 1/(k+1)$

 $x_{k+1} := \mathsf{GradStep}_{\mathcal{Q},\mathcal{B}}(x_k,hg_k)$

return \bar{x}_N

$$\triangleright = \frac{1}{N} \sum_{k=0}^{N-1} x_k$$
 by construction

This algorithm uses the following gradient step operation:

$$\mathsf{GradStep}_{Q,B}(x,g) \coloneqq \mathop{\mathsf{argmin}}_{y \in Q} \Big\{ \langle g,y \rangle + \frac{1}{2} \|y - x\|_B^2 \Big\},$$

where $x \in \mathbb{E}$ and $g \in (\ker B)^{\perp}$.

■ When $B \succ 0$, this is a standard projected gradient step (w.r.t. B-norm):

$$\mathsf{GradStep}_{Q,B}(x,g) = \mathsf{Proj}_{Q,B}(x-B^{-1}g),$$

where $\operatorname{Proj}_{Q,B}(x) := \operatorname{argmin}_{y \in Q} ||y - x||_B$.

When $Q = \mathbb{E}$, point $T \coloneqq \mathsf{GradStep}_{Q,B}(x,g)$ is a solution of linear system B(T-x) = -g.

Convergence Guarantees

Point \bar{x}_N is an approximate solution to our problem in relative scale:

$$(1-\delta_{\mathsf{N}})\,\mathbb{E}[f(ar{x}_{\mathsf{N}})] \leq f^*, \qquad \delta_{\mathsf{N}} \coloneqq rac{1+2\gamma_0 L h^2 \mathsf{N}}{1+2\gamma_0 h \mathsf{N}}.$$

A (nearly) optimal choice of step size is

$$h^* = rac{1}{\sqrt{2\gamma_0 NL}} \implies \delta_N^* = \sqrt{rac{2L}{\gamma_0 N}}.$$

■ Alternatively, we can tune the step size to the target accuracy $\delta \in (0,1)$:

$$h^* = \frac{\delta}{2L} \implies \delta_N^* \le \delta \quad \forall N \ge N(\delta) := \frac{2L}{\gamma_0 \delta^2}.$$

■ In many applications, one does not need high accuracy: $\delta \in [0.01, 0.05]$.

Application: Spectral Linear Regression

- Without loss of generality, assume that $n \leq m$.
- Let us square the objective function:

$$(\phi^*)^2 = \min_{\mathbf{x} \in \mathbb{R}^d} [f(\mathbf{x}) \coloneqq \phi^2(\mathbf{x}) = F(A\mathbf{x} - C)], \qquad F(X) \coloneqq \|X\|_{\infty}^2.$$

- This problem needs to be solved with accuracy $\delta_2 := \delta(2 \delta)$ to obtain a δ -approximate solution to the original problem.
- Choose *B* as the Gram matrix:

$$B := A^*A = (\langle A_i, A_i \rangle),$$

and x_0 by solving the linear regression problem:

$$x_0 \coloneqq \operatorname{argmin} \|Ax - C\|_F^2 = \operatorname{GradStep}_B(0, -A^*C).$$

■ Then, f is consistent with the seminorm with constant

$$\gamma_0 = \frac{1}{n}$$
.

• Oracle $g(x, \xi)$ can be naturally chosen as follows:

$$g(x,\xi) \coloneqq A^*G(Ax-C,\xi),$$

provided that we know a suitable oracle $G(X, \xi)$ for F (unbiased and L-bounded w.r.t. F in the Frobenius norm).

Power Iteration Oracle

Function F has the following subgradient:

$$F'(X) := 2v(X)[v(X)]^T X \in \partial F(X),$$

where $v(X) \in \mathcal{S}^{n-1}$ is a leading unit eigenvector of XX^T .

To approximate v(X), we can use standard Power Method of degree q: $v(X) \approx v_u^q(X) := \frac{(XX^T)^q u}{\|(XX^T)^q u\|}, \qquad u \sim \text{Unif}(\mathcal{S}^{n-1}).$

■ This gives us oracle G(x, u) with L = 2. However, this oracle is biased, so we have no theoretical guarantees.

Our New Oracle for Squared Spectral Norm

■ Introduce convex probabilistic approximation of F of degree $p \ge 1$:

$$F_p(X) := \mathbb{E}_u[\langle (XX^T)^p u, u \rangle^{1/p}], \quad u \sim \mathsf{Unif}(\mathcal{S}^{n-1}).$$

■ We can quantify how close F_p is to F depending on p:

$$\beta_p F(X) \leq F_p(X) \leq F(X), \qquad \beta_p \coloneqq \frac{p}{p+2} \left(\frac{1}{n}\right)^{1/p}.$$

For any odd p = 2q + 1, we have unbiased stochastic oracle for F_p :

$$G_p(X,u) := 2\hat{v}_u^q(X)[\hat{v}_u^q(X)]^TX, \qquad \hat{v}_u^q(X) := \frac{(XX^T)^q u}{\langle (XX^T)^{2q+1}u,u \rangle^{q/(2q+1)}}.$$

This oracle is bounded w.r.t. F with constant $L_p := 2/\beta_p$.

■ Instead of f, we can now minimize $f_p(x) := F_p(Ax - C)$ using oracle G_p and choosing oracle degree p = 2q + 1 sufficiently large:

$$\beta_p \ge 1 - \delta_2/2 \iff q = |(\ln n + 2)/\delta_2|.$$

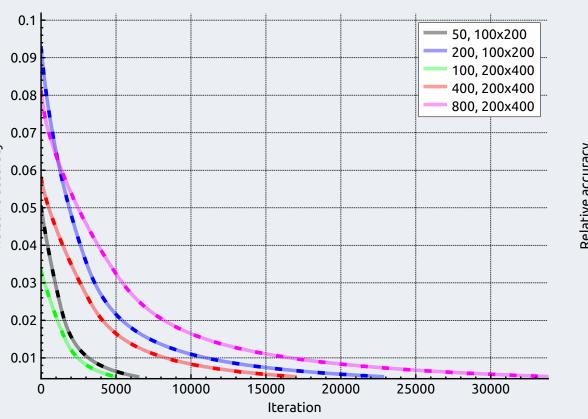
The final worst-case iteration complexity bound is

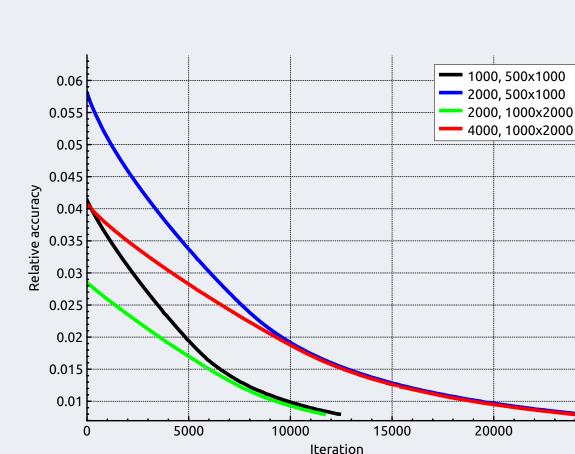
$$N_p(\delta) := \frac{8\beta_p^2 L_p}{\gamma_0 \delta_2^2} = \frac{16\beta_p n}{\delta_2^2} \leq \frac{16n}{\delta^2}.$$

Numerical Experiments

 $\delta = 0.01$

Dense data				
d	n	m	р	$N_p(\delta)$
50	100	200	663	4000269
200	100	200		
100	200	400		
400	200	400	773	8000577
800	200	400		





■ In all cases, performance is much better than predicted by theory.

Comparison of two oracles:

■ Almost identical ⇒
theoretical guarantees for
Power Iteration Oracle?

