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Motivation Theorem (local rate of convergence)
Minimization of the ¢,-regularized average of many functions: Let all the centers be initialized close enough to the optimum w.,.:
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A lot of problems in machine learning have this form. Assume the unit step length oy = 1 is used.
Big data setting: N is very large (millions, billions, etc.). Denote the sequence of iterates of NIM by {w}.
Then {wy} converges to w, at an R-superlinear rate:
Incremental/stochastic methods, whose iteration cost does not . Tkr1
. . Wik —w.|, <7y and lim = 0.
depend on N, are one of the most effective tools for this task. k—oo Ty
Moreover, the rate of convergence is N-step R-quadratic:
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There exist a lo.t of 1ncrem.ental met.hods. . il reN < =17, k=2N,2N +1,....
They all have either a sublinear or linear rate of 5 2\
convergence. K T
We propose an incremental method with a = | Linear models
superlinear rate of convergence. superiineas
teration Linear models: fi(w) := ¢;(x/w) for some x; € RP.
The gradients and Hessians have a special structure:
Assumptions Vi(w)=¢l(xw)x, and  Vfi(w) = ¢} (x]w)xix].
Instead of v* store the corresponding dot product ¥ := x] v~
All f; are twice continuously differentiable and convex. Work directly with By := (Hy + AI)~! using rank-1 updates.
The Hessians V2f; satisfy the Lipschitz condition: .
fi(w) - V() |, < M |w-ul Vw,u e R” Method Iteration cost, Memory Rate of convergence
H VFi(w) = V()] < 27 ’ ' In iterations In epochs
SGD O(D) O(D) Sublinear | Sublinear
Main idea SAG O(D) O(N + D) Linear Linear
NIM O(D?) O(N + D?) | Superlinear | Quadratic

For each f; build its own quadratic model:

GEOW) = (V) + VA (w = vE) + 5 (w = ) 9 (w - vH).

Experiments (logistic regression)
Together they form a quadratic model of F:
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Step: W1 = Wi + ax (Wi — Wi ), where wy := argmin  QF(w). § 1 g ol gof N\ T L—
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Update only one component g* at each iteration. =R B, ) | -‘ il
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The algorithm
S i
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Algorithm NIM: a Newton-type incremental method =R S o
5 5l
Require: w € RP: initial point; K € N: number of iterations. OT'; §1 2wl
PEPR LR DxD. D. D S g ot ]
1: Initialize: H < 07", p<«<0"; g« 0 S3 Tl a\ A6
v; < undefined, i=1,... N ) F by £ S
2. fork=0,1,2,...,K - 1do | el | timelnbous)
3. Choose an index (cyclic order): i < k mod N + 1 S : ' :
. . Sl
4 Update the average Hessian, scaled center and gradient: 74
H < H+ (1/N)[V*fi(w) - VZfi(vi)] Sgs 0
2F _ V2f(v v, + ax D o |
p<p+(1/N)[Vfi(w)w = VSi(vi)vi] A
Rz =
g < g+ (1/N)[Vfi(w) - Vfi(vi)] = 7 e :
. €pocC
5: Move the ith center: v; <« w poc !
6: Find the model’s minimum: w < (H + \I)~!(p -
~ ( )" (P-8) Future work
7. Make a step: w < w + a(w — w) for some o > 0
s: end for Global convergence: proof + line search procedure.
9. return w
Assume no subtraction is performed when v; = undefined. References
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