

A fast incremental optimization method with a superlinear rate of convergence

Anton Rodomanov Dmitry Kropotov anton.rodomanov@gmail.com dmitry.kropotov@gmail.com

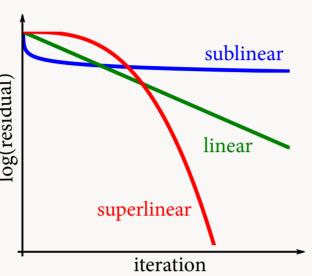
Bayesian methods research group (http://bayesgroup.ru), Lomonosov Moscow State University, Moscow, Russia

Motivation

▶ Minimization of the ℓ_2 -regularized average of many functions:

 $\min_{\mathbf{w} \in \mathbb{R}^D} \left[F(\mathbf{w}) \coloneqq \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 \right].$

- A lot of problems in machine learning have this form.
- ▶ Big data setting: *N* is very large (millions, billions, etc.).
- ► Incremental/stochastic methods, whose iteration cost does not depend on N, are one of the most effective tools for this task.
- ▶ There exist a lot of incremental methods.
- ► They all have either a sublinear or linear rate of 🗐 convergence.
- We propose an incremental method with a superlinear rate of convergence.



Assumptions

- ightharpoonup All f_i are twice continuously differentiable and convex.
- ▶ The Hessians $\nabla^2 f_i$ satisfy the Lipschitz condition:

$$\|\nabla^2 f_i(\mathbf{w}) - \nabla^2 f_i(\mathbf{u})\|_2 \le M \|\mathbf{w} - \mathbf{u}\|_2, \quad \forall \mathbf{w}, \mathbf{u} \in \mathbb{R}^D.$$

Main idea

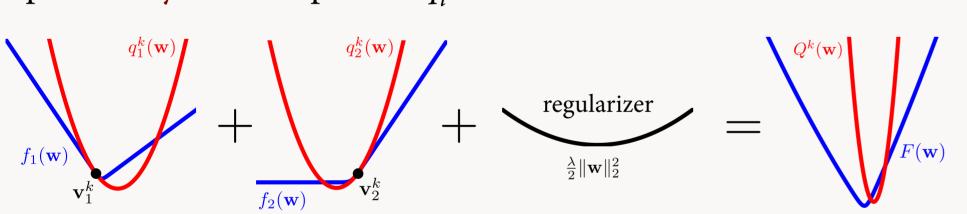
For each f_i build its own quadratic model:

$$q_i^k(\mathbf{w}) := f_i(\mathbf{v}_i^k) + \nabla f_i(\mathbf{v}_i^k)^{\top}(\mathbf{w} - \mathbf{v}_i^k) + \frac{1}{2}(\mathbf{w} - \mathbf{v}_i^k)^{\top}\nabla^2 f_i(\mathbf{v}_i^k)(\mathbf{w} - \mathbf{v}_i^k).$$

► Together they form a quadratic model of *F*:

$$Q^{k}(\mathbf{w}) := \frac{1}{N} \sum_{i=1}^{N} q_{i}^{k}(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}.$$

- Step: $\mathbf{w}_{k+1} := \mathbf{w}_k + \alpha_k(\bar{\mathbf{w}}_k \mathbf{w}_k)$, where $\bar{\mathbf{w}}_k := \operatorname{argmin}_{\mathbf{w}} Q^k(\mathbf{w})$.
- ▶ Update only one component q_i^k at each iteration.



The algorithm

Algorithm NIM: a Newton-type incremental method

Require: $\mathbf{w} \in \mathbb{R}^D$: initial point; $K \in \mathbb{N}$: number of iterations.

1: Initialize:
$$\mathbf{H} \leftarrow \mathbf{0}^{D \times D}$$
; $\mathbf{p} \leftarrow \mathbf{0}^{D}$; $\mathbf{g} \leftarrow \mathbf{0}^{D}$
 $\mathbf{v}_{i} \leftarrow \text{undefined}, i = 1, \dots, N$

- 2: **for** $k = 0, 1, 2, \dots, K 1$ **do**
- Choose an index (cyclic order): $i \leftarrow k \mod N + 1$ 3:
- Update the average Hessian, scaled center and gradient:

$$\mathbf{H} \leftarrow \mathbf{H} + (1/N) [\nabla^2 f_i(\mathbf{w}) - \nabla^2 f_i(\mathbf{v}_i)]$$

$$\mathbf{p} \leftarrow \mathbf{p} + (1/N) [\nabla^2 f_i(\mathbf{w}) \mathbf{w} - \nabla^2 f_i(\mathbf{v}_i) \mathbf{v}_i]$$

$$\mathbf{g} \leftarrow \mathbf{g} + (1/N) [\nabla f_i(\mathbf{w}) - \nabla f_i(\mathbf{v}_i)]$$

- Move the *i*th center: $\mathbf{v}_i \leftarrow \mathbf{w}$
- Find the model's minimum: $\bar{\mathbf{w}} \leftarrow (\mathbf{H} + \lambda \mathbf{I})^{-1}(\mathbf{p} \mathbf{g})$
- Make a step: $\mathbf{w} \leftarrow \mathbf{w} + \alpha(\bar{\mathbf{w}} \mathbf{w})$ for some $\alpha > 0$
- 8: end for

5:

9: return w

Assume no subtraction is performed when \mathbf{v}_i = undefined.

Theorem (local rate of convergence)

Let all the centers be initialized close enough to the optimum \mathbf{w}_* :

$$\left\|\mathbf{v}_{i}^{0}-\mathbf{w}_{*}\right\|_{2}\leq\frac{2\lambda}{M\sqrt{N}}.$$

- Assume the unit step length $\alpha_k \equiv 1$ is used.
- ▶ Denote the sequence of iterates of NIM by $\{\mathbf{w}_k\}$.
- ▶ Then $\{\mathbf{w}_k\}$ converges to \mathbf{w}_* at an R-superlinear rate:

$$\|\mathbf{w}_k - \mathbf{w}_*\|_2 \le r_k$$
 and $\lim_{k \to \infty} \frac{r_{k+1}}{r_k} = 0$.

► Moreover, the rate of convergence is *N*-step R-quadratic:

$$r_{k+N} \leq \frac{M}{2\lambda}r_k^2, \qquad k=2N, 2N+1, \ldots$$

Linear models

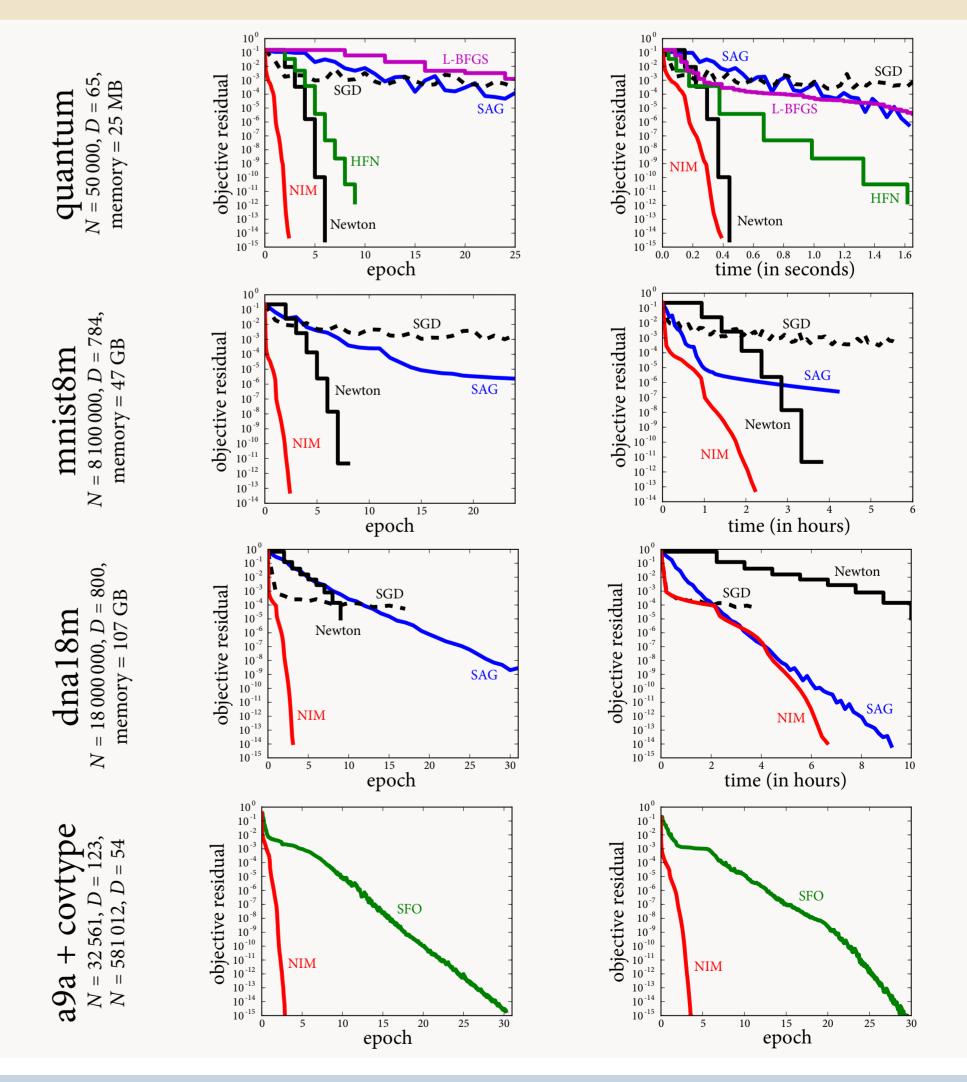
- Linear models: $f_i(\mathbf{w}) := \phi_i(\mathbf{x}_i^{\mathsf{T}}\mathbf{w})$ for some $\mathbf{x}_i \in \mathbb{R}^D$.
- ► The gradients and Hessians have a special structure:

$$\nabla f_i(\mathbf{w}) = \phi_i'(\mathbf{x}_i^{\mathsf{T}}\mathbf{w})\mathbf{x}_i$$
 and $\nabla^2 f_i(\mathbf{w}) = \phi_i''(\mathbf{x}_i^{\mathsf{T}}\mathbf{w})\mathbf{x}_i\mathbf{x}_i^{\mathsf{T}}$.

- ▶ Instead of \mathbf{v}_i^k store the corresponding dot product $\mu_i^k \coloneqq \mathbf{x}_i^\top \mathbf{v}_i^k$.
- ▶ Work directly with $\mathbf{B}_k := (\mathbf{H}_k + \lambda \mathbf{I})^{-1}$ using rank-1 updates.

Method	Iteration cost	Memory	Rate of convergence	
			In iterations	In epochs
SGD	O(D)	O(D)	Sublinear	Sublinear
SAG	O(D)	O(N+D)	Linear	Linear
NIM	$O(D^2)$	$O(N+D^2)$	Superlinear	Quadratic

Experiments (logistic regression)



Future work

► Global convergence: proof + line search procedure.

References

- [1] H. Robbins and S. Monro. A stochastic approximation method. *The annals of mathematical statistics*, 1951.
- [2] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. *arXiv*, 2013.
- [3] J. Sohl-Dickstein, B. Poole and S. Ganguli. Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods. 31th International Conference on Machine Learning, 2014.